• Title/Summary/Keyword: sampling simulation

Search Result 935, Processing Time 0.032 seconds

Consideration on industry department test of vocational education area in college scholastic ability test (대학수학능력시험 직업탐구영역 공업계열 출제 문항에 관한 고찰)

  • Hahm, Seung-Yeon
    • 대한공업교육학회지
    • /
    • v.32 no.2
    • /
    • pp.23-46
    • /
    • 2007
  • The purpose of this study was to present improvement directions of college scholastic ability test on industry department. Industry department test were classify and abstracted sampling test on contents and movement domain, analyzed example items of college scholastic ability test on industry department. Research methods used in this study were review of related literature, the item analysis and item pattern analysis between college scholastic ability test on introduction to industry and curriculum, contents of textbook. After finding a problem of developing items, trying to find a solution to the problem and developing an up-to-date method of items was to present improvement. Based on the result of the study, some recommendations for future researches were made as follows: First, a phenomenon of making same contents items over again and no making items not on made the items ever have to cut. Second, Time to read and make sense of items have to reduce because depend on the degree of difficulty related on time to understand of items. Third, the depth of textbook contents has to develop on curriculum this year. Fourth, the succeeding study on linkage between college scholastic ability test and simulation of college scholastic ability test. Fifth, verification validity on contents of new movement domain is developed new and striking test items.

An Analysis of the Efficiency of Agricultural Business Corporations Using the Stochastic DEA Model (농업생산법인의 경영효율성 분석: 부트스트래핑 기법 활용)

  • Lee, Sang-Ho;Kim, Chung-Sil;Kwon, Kyung-Sup
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.6 no.4
    • /
    • pp.137-152
    • /
    • 2011
  • The purpose of this study is to estimate efficiency of agricultural business corporations using Data Envelopment Analysis. A proposed method employs a bootstrapping approach to generate efficiency estimates through Monte Carlo simulation re-sampling process. The technical efficiency, pure technical efficiency, and scale efficiency measure of the corporations is 0.749 0.790, 0.948 respectively. Among the 692 agricultural business corporations, the number of Increasing Returns to Scale (IRS)-type corporations was analyzed to be 539(77.9%). The number of Constant Returns to Scale (CRS)-type corporations was 108(15.6%), and that of Decreasing Returns to Scale (DRS)-type corporations was 45(6.5%). Since an increase in input is lower than an increase in output in IRS, an increase in input factors such as new investments is required. The Tobit model suggests that the type of corporation, capital level, and period of operation affect the efficiency score more than others. The positive coefficient of capital level and period of operation variable indicates that efficiency score increases as capital level and period of operation increases.

  • PDF

Stability Analysis for a Virtual Spring Model with an Extrapolation and High-frequency ZOH (외삽법과 고주파 영차홀드 출력이 포함된 가상 스프링 모델의 안정성 영역 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2018
  • In order to enhance the realism of a virtual environment, a method of maximizing the stiffness of the virtual environment model is needed, which maintains the stability of the haptic system. In our previous research, we proposed a haptic system with a first order hold, instead of a zero order hold, and showed that the maximum available stiffness of a virtual spring with the first-order hold is larger than that with the zero-order hold. However, in terms of real system implementation, the zero order hold is a more common and easy method. In this paper, we propose an extrapolation method and a high frequency zero-order-hold output method in order to obtain the stability region using a zero order hold, which is equivalent to the method using the first-order-hold. The simulation results shows that the stability range of the virtual spring becomes almost the same as that of the method using the first order hold when the sampling period of the high frequency zero-order-hold method is decreased. Moreover, the stability range of the proposed method is several times to several tens of times greater than that of the method using the zero order hold only. Therefore, it is expected that the proposed method can enhance the realism of rigid bodies in a virtual environment.

Construction and Experiment of an Educational Radar System (교육용 레이다 시스템의 제작 및 실험)

  • Ji, Younghun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.293-302
    • /
    • 2014
  • Radar systems are used in remote sensing mainly as space-borne, airborne and ground-based Synthetic Aperture Radar (SAR), scatterometer and Doppler radar. Those systems are composed of expensive equipments and require expertise and professional skills for operation. Because of the limitation in getting experiences of the radar and SAR systems and its operations in ordinary universities and institutions, it is difficult to learn and exercise essential principles of radar hardware which are essential to understand and develop new application fields. To overcome those difficulties, in this paper, we present the construction and experiment of a low-cost educational radar system based on the blueprints of the MIT Cantenna system. The radar system was operated in three modes. Firstly, the velocity of moving cars was measured in Doppler radar mode. Secondly, the range of two moving targets were measured in radar mode with range resolution. Lastly, 2D images were constructed in GB-SAR mode to enhance the azimuth resolution. Additionally, we simulated the SAR raw data to compare Deramp-FFT and ${\omega}-k$ algorithms and to analyze the effect of antenna positional error for SAR focusing. We expect the system can be further developed into a light-weight SAR system onboard a unmanned aerial vehicle by improving the system with higher sampling frequency, I/Q acquisition, and more stable circuit design.

Design of a SQUID Sensor Array Measuring the Tangential Field Components in Magnetocardiogram (심자도용 접선성분자장 측정방식 스퀴드 센서열 설계)

  • Kim K.;Lee Y. H;Kwon H;Kim J. M;Kim I. S;Park Y. K;Lee K. W
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • We consider design factors for a SQUID sensor array to construct a 52-channel magnetocardiogram (MCG) system that can be used to measure tangential components of the cardiac magnetic fields. Nowadays, full-size multichannel MCG systems, which cover the whole signal area of a heart, are developed to improve the clinical analysis with high accuracy and to provide patients with comfort in the course of measurement. To design the full-size MCG system, we have to make a compromise between cost and performance. The cost is involved with the number of sensors, the number of the electronics, the size of a cooling dewar, the consumption of refrigerants for maintenance, and etc. The performance is the capability of covering the whole heart volume at once and of localizing current sources with a small error. In this study, we design the cost-effective arrangement of sensors for MCG by considering an adequate sensor interval and the confidence region of a tolerable localization error, which covers the heart. In order to fit the detector array on the cylindrical dewar economically, we removed the detectors that were located at the corners of the array square. Through simulations using the confidence region method, we verified that our design of the detector array was good enough to obtain whole information from the heart at a time. A result of the simulation also suggested that tangential-component MCG measurement could localize deeper current dipoles than normal-component MCG measurement with the same confidence volume; therefore, we conclude that measurement of the tangential component is more suitable to an MCG system than measurement of the normal component.

  • PDF

A 2.0-GS/s 5-b Current Mode ADC-Based Receiver with Embedded Channel Equalizer (채널 등화기를 내장한 2.0GS/s 5비트 전류 모드 ADC 기반 수신기)

  • Moon, Jong-Ho;Jung, Woo-Chul;Kim, Jin-Tae;Kwon, Kee-Won;Jun, Young-Hyun;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.184-193
    • /
    • 2012
  • In this paper, a 5-bit 2-GS/s 2-way time interleaved pipeline ADC for high-speed serial link receiver is demonstrated. Implemented as a current-mode amplifier, the stage ADC simultaneously processes the tracking and residue amplification to achieve higher sampling rate. In addition, each stage incorporates a built-in 1-tap FIR equalizer, reducing inter-symbol-interference (ISI)without an extra digital post-processing. The ADC is designed in a 110nm CMOS technology. It comsumes 91mW from a 1.2-V supply. The area excluding the memory block is $0.58{\times}0.42mm^2$. Simulation results show that when equalizer is enabled, the ADC achieves SNDR of 25.2dB and ENOB of 3.9bits at 2.0GS/s sample rate for a Nyquist input signal. When the equalizer is disengaged, SNDR is 26.0dB for 20MHz-1.0GHz input signal, and the ENOB of 4.0bits.

Third order Sigma-Delta Modulator with Delayed Feed-forward Path for Low-power Operation (저전력 동작을 위한 지연된 피드-포워드 경로를 갖는 3차 시그마-델타 변조기)

  • Lee, Minwoong;Lee, Jongyeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.57-63
    • /
    • 2014
  • This paper proposes an architecture of $3^{rd}$ order SDM(Sigma-Delta Modulator) with delayed feed-forward path in order to reduce the power consumption and area. The proposed SDM improve the architecture of conventional $3^{rd}$ order SDM which consists of two integrators. The proposed architecture can increase the coefficient values of first stage doubly by inserting the delayed feed-forward path. Accordingly, compared with the conventional architecture, the capacitor value($C_I$) of first integrator is reduced by half. Thus, because the load capacitance of first integrator became the half of original value, the output current of first op-amp is reduced as 51% and the capacitance area of first integrator is reduced as 48%. Therefore, the proposed method can optimize the power and the area. The proposed architecture in this paper is simulated under conditions which are supply voltage of 1.8V, input signal 1Vpp/1KHz, signal bandwidth of 24KHz and sampling frequency of 2.8224MHz in the 0.18um CMOS process. The simulation results are SNR(Signal to Noise Ratio) of 88.9dB and ENOB(Effective Number of Bits) of 14-bits. The total power consumption of the proposed SDM is $180{\mu}W$.

Experimental Evaluation of Levitation and Imbalance Compensation for the Magnetic Bearing System Using Discrete Time Q-Parameterization Control (이산시간 Q 매개변수화 제어를 이용한 자기축수 시스템에 대한 부상과 불평형보정의 실험적 평가)

  • ;Fumio Matsumura
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.964-973
    • /
    • 1998
  • In this paper we propose a levitation and imbalance compensation controller design methodology of magnetic bearing system. In order to achieve levitation and elimination of unbalance vibartion in some operation speed we use the discrete-time Q-parameterization control. When rotor speed p = 0 there are no rotor unbalance, with frequency equals to the rotational speed. So in order to make levitatiom we choose the Q-parameterization controller free parameter Q such that the controller has poles on the unit circle at z = 1. However, when rotor speed p $\neq$ 0 there exist sinusoidal disturbance forces, with frequency equals to the rotational speed. So in order to achieve asymptotic rejection of these disturbance forces, the Q-parameterization controller free parameter Q is chosen such that the controller has poles on the unit circle at z = $exp^{ipTs}$ for a certain speed of rotation p ( $T_s$ is the sampling period). First, we introduce the experimental setup employed in this research. Second, we give a mathematical model for the magnetic bearing in difference equation form. Third, we explain the proposed discrete-time Q-parameterization controller design methodology. The controller free parameter Q is assumed to be a proper stable transfer function. Fourth, we show that the controller free parameter which satisfies the design objectives can be obtained by simply solving a set of linear equations rather than solving a complicated optimization problem. Finally, several simulation and experimental results are obtained to evaluate the proposed controller. The results obtained show the effectiveness of the proposed controller in eliminating the unbalance vibrations at the design speed of rotation.

  • PDF

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part II: Multi-dimensional Fire Dynamics) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향 (Part II: 다차원 화재거동))

  • Kim, Jong-Hyun;Ko, Gwon-Hyun;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.32-38
    • /
    • 2010
  • Multi-dimensional fire dynamics were studied numerically with the change in ventilation conditions in a full-scale ISO 9705 room. Fire Dynamic Simulator (FDS) was used for the identical conditions conducted in previous experiments. Flow rate and doorway width were changed to create over-ventilated fire (OVF) and under-ventilated fire (UVF). From the numerical simulation, it was found that the internal flow pattern rotated in the opposite direction for the UVF relative to the OVF so that a portion of products recirculated to the inside of compartment. Significant change in flow pattern with ventilation conditions may affect changes in the complex process of CO and soot formation inside the compartment due to increase in the residence time of high-temperature products. The fire behavior in the UVF created complex 3D characteristics of species distribution as well as thermal and flow structures. In particular, additional burning near the side wall inside the compartment significantly affected the flow pattern and CO production. The distribution of CO inside the compartment was explained with 3D $O_2$ distribution and flow patterns. It was observed that gas sampling at local positions in the upper layer were insufficient to completely characterize the internal structure of the compartment fire.

On the Study of Initializing Extended Depth of Focus Algorithm Parameters (Extended Depth of Focus 알고리듬 파라메타 초기설정에 관한 연구)

  • Yoo, Kyung-Moo;Joo, Hyo-Nam;Kim, Joon-Seek;Park, Duck-Chun;Choi, In-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.625-633
    • /
    • 2012
  • Extended Depth of Focus (EDF) algorithms for extracting three-dimensional (3D) information from a set of optical image slices are studied by many researches recently. Due to the limited depth of focus of the microscope, only a small portion of the image slices are in focus. Most of the EDF algorithms try to find the in-focus area to generate a single focused image and a 3D depth image. Inherent to most image processing algorithms, the EDF algorithms need parameters to be properly initialized to perform successfully. In this paper, we select three popular transform-based EDF algorithms which are each based on pyramid, wavelet transform, and complex wavelet transform, and study the performance of the algorithms according to the initialization of its parameters. The parameters we considered consist of the number of levels used in the transform, the selection of the lowest level image, the window size used in high frequency filter, the noise reduction method, etc. Through extended simulation, we find a good relationship between the initialization of the parameters and the properties of both the texture and 3D ground truth images. Typically, we find that a proper initialization of the parameters improve the algorithm performance 3dB ~ 19dB over a default initialization in recovering the 3D information.