Abstract
Extended Depth of Focus (EDF) algorithms for extracting three-dimensional (3D) information from a set of optical image slices are studied by many researches recently. Due to the limited depth of focus of the microscope, only a small portion of the image slices are in focus. Most of the EDF algorithms try to find the in-focus area to generate a single focused image and a 3D depth image. Inherent to most image processing algorithms, the EDF algorithms need parameters to be properly initialized to perform successfully. In this paper, we select three popular transform-based EDF algorithms which are each based on pyramid, wavelet transform, and complex wavelet transform, and study the performance of the algorithms according to the initialization of its parameters. The parameters we considered consist of the number of levels used in the transform, the selection of the lowest level image, the window size used in high frequency filter, the noise reduction method, etc. Through extended simulation, we find a good relationship between the initialization of the parameters and the properties of both the texture and 3D ground truth images. Typically, we find that a proper initialization of the parameters improve the algorithm performance 3dB ~ 19dB over a default initialization in recovering the 3D information.
카메라로부터 획득한 여러 장의 영상에서 3차원 정보를 얻어내기 위한 Extended Depth of Focus(EDF) 알고리듬은 최근 많은 연구가 이루어지고 있다. 피사물체의 깊이정보에 따른 제한된 초점으로 인해 초점이 일부분 맞는 여러 장의 이미지를 가지고 EDF알고리듬은 각 영상들의 focus 영역에서 하나의 focused 영상과 depth영상을 취득한다. 대부분의 영상처리 알고리듬이 그렇듯, EDF 알고리듬에 사용되는 파라메타들의 초기설정에 따라 결과에 큰 영향을 준다. 본 논문에서는 EDF알고리듬을 적용하기 전 입력영상의 기반으로 pyramid, wavelet transform, complex wavelet transform을 사용하였으며 EDF알고리즘에서 사용되는 파라메타들의 설정에 따른 각 알고리즘의 성능을 분석하였다. 본 논문에서 제시한 파라메타들은 입력영상의 크기에 따른 down sampling의 단계, 영상의 기반 알고리듬의 영상 복원에 사용되는 최하위 레벨의 이미지에 대한 취득 형태, 연산에 쓰이는 window size의 크기이다. 우리는 실험을 통해 제시한 입력영상에 따라 각 파라메타들이 미치는 영향에 대해 분석하였고, 기존에 사용되었던 일반적인 파라메타 선정방식보다 최적화된 파라메타 선정방식을 통해 얻어진 결과영상이 3dB ~ 19dB정도 개선된 것을 확인하였다.