• Title/Summary/Keyword: salt concentration optimization

Search Result 36, Processing Time 0.027 seconds

Optimization of chemical cleaning of discarded reverse osmosis membranes for reuse

  • Jung, Minsu;Yaqub, Muhammad;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study optimized the chemical cleaning process of discarded RO membranes for reuse in less demanding separation processes. The effect of physicochemical parameters, including the temperature, cleaning time, pH of the cleaning solution, and addition of additives, on the cleaning process was investigated. The membrane performance was evaluated by testing the flux recovery rate and salt rejection before and after the cleaning process. High temperatures (45-50 ℃) resulted in a better flux recovery rate of 71% with more than 80% salt rejection. Equal time for acid and base cleaning 3-3 h presented a 72.43% flux recovery rate with salt rejection above 85%. During acid and base cleaning, the best results were achieved at pH values of 3.0 and 12.0, respectively. Moreover, 0.05% concentration of ethylenediaminetetraacetic acid presented 72.3% flux recovery, while 69.2% flux was achieved using sodium dodecyl sulfate with a concentration of 0.5%; both showed >80% salt rejection, indicating no damage to the active layer of the membrane. Conversely, 0.5% concentration of sodium percarbonate showed 83.1% flux recovery and 0.005% concentration of sodium hypochlorite presented 85.2% flux recovery, while a high concentration of these chemicals resulted in oxidation of the membrane that caused a reduction in salt rejection.

Optimization for Pretreatment Condition according to Salt Concentration and Soaking Time in the Preparation of Perilla Jangachi (소금 농도와 삭힘 시간에 따른 깻잎 장아찌의 전처리 조건의 최적화)

  • Lee, Hye-Ran;Nam, Sang-Min;Lee, Jong-Mee
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 2002
  • Jangachi(salted and fermented vegetable) has been made by Korean traditionally using several kinds of vegetables, which is a good source of variety of nutrients and vitamins. There are many methods for making Jangachi. Generally soy sauce Jangachi is made through two steps. First, as a pretreatment, vegetables are soaked in salt water. Second, soaked vegetables are fermented in various ingredients like soy sauce, sugar, garlic, ginger and so on. This study was performed to observe changes in contents of chemical components and sensory evaluation of pretreated perilla leaf. Perilla leaf was soaked in water with different levels of salt concentration(2, 5 and 8 %) and soaking time(1, 3 and 5 days). The optimal level of salt and soaking time was determined with the results of sensory evaluation by response surface methodology and analysis of composition. The moisture contents decreased as the levels of salt and soaking time increased. The moisture content of untreated sample was 87.5 % and when soaked for 5 days in the water of 8 % salt concentration, it became 78.27 %. pH of Perilla leaf was high in high levels of salt concentration and short soaking time. Total acidity was so opposite to pH that was low in high levels of salt concentration and short soaking time. In the water of 8 % salt concentration, total acidity was 0.14 % when soaked for 1 day, 0.20 % for 3 days and 0.30 % for 5 days. Salt contents became greater as the soaking time increased. As the results of puncture test, soaked Perilla leaf's toughness increased as the levels of salt increased and soaking time decreased. Among the sensory attributes, greenness increased as the levels of salt concentration increased when soaked for more than 3 days. Saltiness and bitterness became greater as the levels of salt concentration increased. Perilla flavor decreased with the short soaking time. Off-flavor increased with the increased levels of soaking time and decreased salt concentration when soaked for more than 3 days. Toughness decreased as the levels of soaking time increased. Crispness increased with the increased levels of salt concentration. The condition of pretreated Perilla was optimum when it soaked for 42 hours in 4 % salt concentration.

Effects of Salt Concentration and Drying Time on the Quality Characteristics of Pork Jerky during Dehydration

  • Yang, Han-Sul;Kang, Sung-Won;Joo, Seon-Tea;Choi, Sung-Gil
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • This study was conducted in order to evaluate the effects of brine pre-soaking at different concentrations and drying time on the quality characteristics of pork jerky. The physicochemical properties of pork jerky including final moisture content, water activity ($a_w$), shear force, microstructure, and thiobarbituric acid reactive substance (TBARS) values were investigated. The sensory attributes of pork jerky were evaluated and used as parameters for determining the optimum drying condition. The sliced pork samples were pre-soaked at salt concentrations ranging from 0 to 10% for 3 h and then dried at $70^{\circ}C$ for up to 10 h. The pre-soaked samples in the salt solution showed higher final moisture content than the control sample after drying for 10 h. The final moisture content of pork jerky increased with increasing salt concentrations. On the other hand, the water activity with regards to the pre-soaked samples in a 10% salt solution showed the lowest value for up to 8 h drying. The shear force values of pork jerky decreased with increasing salt concentration while the TBARS values of the samples increased with increasing salt concentrations. Sensory evaluation suggested that the color, flavor, juiciness, and tenderness of the pork jerky samples were improved by pre-soaking in a 2% salt solution and the highest likeability score of pork jerky among the samples were obtained by pre-soaking in a 2% salt solution prior to drying.

Optimization of Programmed Suppression in a Cell-Free Protein Synthesis System with Unnatural Amino Acid S-(2-Nitrobenzyl)cysteine

  • HYUN JOO;KANG, TAEK JIN;HUI KYOUNG SONG;JIN HO AHN;CHA YONG CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.344-347
    • /
    • 2003
  • Unnatural amino acid S-(2-nitrobenzyl)cysteine was incorporated into human erythropoietin by using a programmed suppression of nonsense codon in a cell-free protein synthesis system. Several controlling factors affecting the operational efficiency of the suppression were investigated and optimized. The amount of suppressor tRNA and the concentration of $Mg^2+$ were crucial not only for the efficiency but also for the control of the exact suppression. In addition, some general optimization factor are reported in order to improve the efficiency in an unnatural amino acid mutagenesis.

Optimization of Ascorbic Acid Encapsulation in PLA Microcapsules Using Double Emulsion Process (이중유화법을 이용한 PLA 마이크로캡슐 내부로의 아스코르브산 캡슐화 공정 최적화)

  • Ji Won Yun;Young Mi Chung
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2024
  • This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.

Optimization of Outdoor Cultivation of Spirulina platensis and Control ofContaminant Organisms (Spirulina platensis의 옥외배양 최적화 및 오염생물 구제)

  • Kim, Choong-Jae;Jung, Yun-Ho;Choi, Gang-Guk;Park, Yong-Ha;Ahn, Chi-Yong;Oh, Hee-Mock
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.133-139
    • /
    • 2006
  • Outdoor cultivation of cyanobacterium Spirulina platensis was carried out for 40 days in a batch mode. A half concentration of the SOT based on the underground water was used as culture medium. Working volume was 5.7 tons with 0.2 m depth. During cultivation, mean water temperature, DO and light intensity were all in proper conditions for the S. platensis growth. The adjustment of pH to over 10 with Na2CO3 and addition of the 1.5% natural salt were very effective to delete contaminant organisms, Chlamydomonas moewusii and Chlorella minutissima occurred one after the other in the culture. The mean productivity of the biomass based on the dry cell weight from 14 to 25 days, after the contaminants were deleted, was 7.8 g ·m–2· d–1, which was relatively high productivity in that a half concentration of the SOT was used for the culture. Underground water used in the culture minimized contaminants invasion and addition of the 1.5% natural salt was effective to delete contaminants as well as acted as mineral supplement in outdoor cultivation of S. platensis. Harvesting using the floating activity of S. platensis was effective from mass floating in day time after overnight without agitation and illumination.

Optimization of Inner Nitriding Process for Cr-Mo-V Steel of Small Arms Barrel by using Taguchi Experimental Design Method (다구찌 실험계획법을 이용한 소구경화기 총열 내부용 Cr-Mo-V강의 질화공정 최적화)

  • Kwon, Hyuk-Rin;Kim, Dong-Eun;Son, Hyung-Dong;Shin, Jea-Won;Park, Jae-Ha;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.148-154
    • /
    • 2018
  • When shooting small arms, the inner surface temperature is heated up to about $700{\sim}1,000^{\circ}C$ by the friction of the bullet and the inner wall of the barrel and the combustion of propellant. High-temperature propellant gas and high-speed movement of the bullet cause corrosion of the inner wall, which is noticeable immediately in front of the chamber. In this study, the mechanical properties of Cr-Mo-V steel, which is the base material, were tested using Taguchi experimental design to find the best nitriding treatment conditions. For the nitriding process, the working time, salt bath temperature, and salt concentration were combined as three conditions and placed in the $L_9(3^4)$, orthogonal array table. The thicknesses of the white layer and the nitrogen diffusion layer were measured after nitriding under each condition in a salt bath furnace. Durability was evaluated by measuring the degree of dispersion through actual shooting because it was difficult to evaluate the mechanical properties of the cylinder inner structure. As a result, it was confirmed that the durability was optimal at $565^{\circ}C$, 1 hour, 0.5%. These optimal conditions were selected by the statistical analysis of the Minitab program(ver.17).

Optimization of Submerged Culture Conditions for Exo-biopolymer Production by Paecilomyces japonica

  • Bae, Jun-Tae;Sinha, Jayanta;Yun, Jong-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.199-202
    • /
    • 2000
  • Optimization of submerged culture conditions for the production of exo-biopolymer from Paecilomyces japonica was studied. Maltose, yeast extract and potassium phosphate were the most suitable sources of carbon, nitrogen, and inorganic salt, respectively, for both production of the exo-biopolymer and mycelial growth. The optimal culture conditions in flask culture were pH 5.0, $25^{\circ}C$ and 150 rpm in a meidum containing of 30 g maltose, 6 g yeast extract, 2 g polypeptone, 0.5 g $K_2HPO_4$, 0.2 g $KH_2PO_4$, 0.2 g $MnSo_4\;{\cdot}\;5H_2O$, 0.2 g $MgSO_4\;{\cdot}\;7H_2O$ in 1-L distilled water. Exo-biopolymer production and mycelial growth in the suggested medium were significantly increased in a 2.5-L jar fermentor, where the maximum biopolymer concentration was 8 g/1.

  • PDF

Optimization of Soy Sauce Production Conditions with Black Garlic Extract by Response Surface Methodology (반응표면 분석법에 의한 흑마늘 추출물이 첨가된 간장의 제조 조건 설정)

  • Shim, Hye-Jin;Kang, Min-Jung;Kim, Gyeong-Min;Lee, Chang-Kwon;Kim, Jeong-Hwan;Shin, Jung-Hye
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.307-315
    • /
    • 2016
  • Purpose: The central composition design was used to optimize the mixture conditions of black garlic extract. Methods: The response surface methodology (RSM) was carried out from concentration of black garlic extract ($X_1$) and the amount of the black garlic extract ($X_2$) as independent variables, and salts ($Y_1$), reducing sugars ($Y_2$), the content of total phenolic compounds ($Y_3$) and ABTS radical scavenging activity ($Y_4$) as dependent variables. We confirmed the conditions that salinity was minimized and reducing sugar, total phenolic compounds and ABTS radical scavenging activity had maximum values through the response surface analysis. Results: All results had saddle points in originally set up conditions hence, ridge analysis was carried out for narrowing the experimental area. The minimum salt concentration was 16.03% at black garlic extract concentration of $14.84^{\circ}brix$ and contents of 9.26%. Reducing sugar content had maximum of value 7.30 g/mL at $24.58^{\circ}brix$ and contents of 8.08%. Total phenolic compounds contents and ABTS radical scavenging activity had maximum values at black garlic extract concentration of 20.33 and $25.02^{\circ}brix$. The results indicate that addition of black garlic extract contributed to increased reducing sugar, phenolic compounds contents and antioxidant activity of the soy sauce, but the salt concentration was not significantly affected. Conclusion: Based on the results of RSM, the optimum ranges of addition conditions for lowering the salt concentration and, increasing the sensory and functional ability of soy sauce were as follows: black garlic extract concentration of $15-25^{\circ}brix$ and content of 7.8-9.3%.

Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels (두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.