DOI QR코드

DOI QR Code

Optimization of Outdoor Cultivation of Spirulina platensis and Control ofContaminant Organisms

Spirulina platensis의 옥외배양 최적화 및 오염생물 구제


Abstract

Outdoor cultivation of cyanobacterium Spirulina platensis was carried out for 40 days in a batch mode. A half concentration of the SOT based on the underground water was used as culture medium. Working volume was 5.7 tons with 0.2 m depth. During cultivation, mean water temperature, DO and light intensity were all in proper conditions for the S. platensis growth. The adjustment of pH to over 10 with Na2CO3 and addition of the 1.5% natural salt were very effective to delete contaminant organisms, Chlamydomonas moewusii and Chlorella minutissima occurred one after the other in the culture. The mean productivity of the biomass based on the dry cell weight from 14 to 25 days, after the contaminants were deleted, was 7.8 g ·m–2· d–1, which was relatively high productivity in that a half concentration of the SOT was used for the culture. Underground water used in the culture minimized contaminants invasion and addition of the 1.5% natural salt was effective to delete contaminants as well as acted as mineral supplement in outdoor cultivation of S. platensis. Harvesting using the floating activity of S. platensis was effective from mass floating in day time after overnight without agitation and illumination.

Keywords

References

  1. Busson F. 1971. Spirulina platensis (Gom.) Geitler et Spirulina geitleri J. de Toni, Cyanophycees Alimentaires. Service de Sante, Marseille
  2. Castenholz R.W. 1989. Subsection III, Order Oscillatoriales. In: Staley J.T., Bryant M.P., Pfenning N. and Holt J.G. (eds), Bergey's Manual of Systematic Bacteriology. Williams and Wilkins Co., Baltimore. Vol. 3, pp. 1771-1780
  3. Ciferri O. 1983. Spirulina, the edible micro-organism. Microbiol. Rev. 47: 551-578
  4. Durand-Chastel H. 1980. Production and use of Spirulina in Mexico. In: Shelef G. and Soeder C.J. (ed), Algae Biomass. Elsevier/NorthHolland Biomedical Press, Amsterdam. pp. 51-64
  5. Fox R.D. 1996. Spirulina production and potential. Edisud, Aixen- Provence, France
  6. Joo D.S., Cho M.G., Buchholz R. and Lee E.H. 1988. Growth and fatty acid composition with growth conditions for Spirulina platensis. J. Korean Fish. Soc. 31: 409-416
  7. Joo D.S., Jung C.K., Lee C.H. and Cho S.Y. 2000. Content of phycocyanins and growth of Spirulina platensis with culture conditions. J. Korean Fish. Soc. 33: 475-481
  8. Kay R.A. 1991. Microalgae as food and supplement. Crit. Rev. Food SCI. Nutr. 30: 555-573 https://doi.org/10.1080/10408399109527556
  9. Kim S.-G., Choi A., Ahn C.-Y., Park Y.-H. and Oh H.-M. 2005. Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett. Appl. Microbiol. 40: 190-194 https://doi.org/10.1111/j.1472-765X.2005.01654.x
  10. Nakayama T., Watanabe S., Mitsui K., Uchida H. and Inouye I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44: 47-55 https://doi.org/10.1111/j.1440-1835.1996.tb00037.x
  11. Ohad I., Kyle D.J., Arntzen C.J. 1984. Membrane protein damage and repair removal and replacement of inactivate 32 $\kappa$D polypeptides in chloroplast membranes. J. Cell Biol. 99: 481-485 https://doi.org/10.1083/jcb.99.2.481
  12. Olguin J.E., Galicia S., Mercado G. and Perez T. 2003. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J. Appl. Phycol. 15: 249-257 https://doi.org/10.1023/A:1023856702544
  13. Samuelsson G., Lonneborg A., Gustafsson P. and Oquist G. 1987. The susceptibility of photosynthesis to photoinhibition and the capacity of recovery in high and low light grown cyanobacteria Anacystis nidulans. Plant Physiol. 83: 438-441 https://doi.org/10.1104/pp.83.2.438
  14. Shimamatsu H. 2004. Mass production of Spirulina, an edible microalga. Hydrobiologia 512: 39-44 https://doi.org/10.1023/B:HYDR.0000020364.23796.04
  15. Tredici M., Papuzzo T. and Tomaselli L. 1986. Outdoor mass culture of Spirulina maxima in sea-water. Appl. Microbiol. Biotechnol. 24: 47-50
  16. Vonshak A. 1997. Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor & Francis Ltd., London, U.K
  17. Vonshak A., Boussiba S., Abeliovich A. and Richmond A. 1983. Production of Spirulina biomass: Maintenance of pure culture outdoors. Biotechnol. Bioeng. 25: 341-349 https://doi.org/10.1002/bit.260250204
  18. Vonshak A., Chanawongse L., Bunnag, B. and Tanticharoen M. 1996. Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. J. Appl. Phycol. 8: 35-40 https://doi.org/10.1007/BF02186220
  19. Vonshak A. and Guy R. 1992. Photoadaptation, photoinhibition and productivity in the blue-green alga Spirulina platensis grown outdoors. Plant Cell Environ. 15: 613-616 https://doi.org/10.1111/j.1365-3040.1992.tb01496.x
  20. Vonshak A., Guy R., Poplawsky R. and Ohad I. 1988. Photoinhibition and its recovery in two strains of the cyanobacterium Spirulina platensis. Plant Cell Physiol. 29: 721-726
  21. Vonshak A. and Richmond A. 1988. Mass production of the blue-green alga Spirulina: an overview. Biomass London 15: 233-247 https://doi.org/10.1016/0144-4565(88)90059-5
  22. Vonshak A. and Tomaselli L. 2000. Arthrospira (Spirulina): Systematic and Ecophysiology. In: Whitton B.A. and Potts M. (eds), The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publisher, The Netherlands. pp. 505-522
  23. Walach M.R., Bazin M. and Pirt J. 1987. Computer control of carbon-nitorgen ratio in Spirulina platensis. Biotechnol. Bioengineer. 29: 520-528 https://doi.org/10.1002/bit.260290417
  24. Walsby A.E. 1994. Gas vesicles. Microbiol. Rev. 58: 94-144
  25. Zarouk C. 1966. Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. Et Gardner) Geitler, Ph. D. thesis, University of Paris, France

Cited by

  1. Characterization of Arthrospira platensis Cultured in Nano-bubble Hydrogen Water vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1042
  2. Particle Separation Characteristics and Harvesting Efficiency of Spirulina platensis Using Micro-bubble vol.27, pp.5, 2013, https://doi.org/10.11001/jksww.2013.27.5.621