DOI QR코드

DOI QR Code

Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels

두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술

  • Lee, Dong-Ju (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • Received : 2015.01.20
  • Accepted : 2015.02.07
  • Published : 2015.02.28

Abstract

To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.

일반적으로 저농도의 염 용액에서 탈염성능이 우수한 축전식 탈염기술에 고농도의 염을 함유한 용액을 처리할 수 있는 가능성을 확인하기 위해 spacer와 spiral 형태의 두 가지 모양의 유로에따라 이온교환수지를 채움으로써 탈염효율을 비교분석하고 기술의 적용가능성을 평가하였다. Spacer와 spiral 형태로 이온교환수지를 채운 축전식 탈염 셀의 탈염효율은 각각 77.21 및 99.94%로, 이는 spiral 형태의 유로에 채워진 이온교환수지가 유입수와 고르게 접촉할 수 있는 유로의 모양을 구성하기 때문에 많은 이온들이 제거될 수 있었다고 판단된다. 또한 pH와 축적 전하량의 변화량에서 탈염성능을 감소시킬 수 있는 페러데이 반응이 현저하게 줄어들었다. 따라서 본 연구를 통해 에너지효율적인 축전식 탈염 기술을 이용하여 고농도의 염 용액의 탈염에 대한 가능성을 제시해주었고, 이온교환수지의 혼합비율의 최적화와 연속식 전기탈이온 기술의 재생공정의 도입에 대한 추가적인 연구를 통해 이상적인 탈염기술을 개발하는 데 큰 기반이 될 것으로 기대된다.

Keywords

References

  1. Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review)", Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  2. M. A. Anderson, A. L. Cudero, J. Palma, "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?", Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  3. B.-R. Lee, I.-J. Jeong, S.-G. Park, "Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI)", J. Korean Electrochem. Soc., 16, 124 (2013).
  4. J.-H. Choi, "Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization", Desalination, 347, 224 (2014). https://doi.org/10.1016/j.desal.2014.06.004
  5. J.-W. Lee, H.-I. Kim, H.-J. Kim, H.-S. Shin, J.-S. Kim, B.-I. Jeong, S.-G. Park, "Desalination Effects of Capacitive Deionization Process Using Activated Carbon Composite Electrodes", J. Korean Electrochem. Soc., 12, 287 (2009). https://doi.org/10.5229/JKES.2009.12.3.287
  6. S. Porada, R. Zhao, A. van der Wal, V. presser, P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  7. J.-Y. Lee, S.-J. Seo, J.-W. Park, S.-H. Moon, "A Study on the Cell Structure for Capacitive Deionization System", Korean Chem. Eng. Res., 48, 791 (2010).
  8. R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, A. van der Wal, "Optimization of salt adsorption rate in membrane capacitive deionization", Water Res., 47, 1941 (2013). https://doi.org/10.1016/j.watres.2013.01.025
  9. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, "Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes", Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  10. B. Jia, L. Zou, "Graphene nanosheets reduced by a multistep process as high-performance electrode material for capacitive deionisation", Carbon, 50, 2315 (2012). https://doi.org/10.1016/j.carbon.2012.01.051
  11. J. C. Farmer, D. V. Fix, G. C. Mack, R. W. Pekala, J. F. Poco, "Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes", J. Electrochem. Soc., 143, 159 (1996). https://doi.org/10.1149/1.1836402
  12. Y.-J. Kim, J.-H. Kim, J.-H. Choi, "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)" J. Memb. Sci., 429, 52 (2013). https://doi.org/10.1016/j.memsci.2012.11.064
  13. P. M. Biesheuvel, A. van der Wal, "Membrane capacitive deionization", J. Colloid Interface Sci., 360, 239 (2011). https://doi.org/10.1016/j.jcis.2011.04.049
  14. Y.-J. Kim, J.-H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  15. K.-S. Kang, W.-K. Son, J.-H. Choi, N.-S. Park, T.-I. Kim, "Ion-Selective Capacitive Deionization Composite Electrode, and Method for Manufacturing a Module", U.S. Patent No. EP 2487278, 1 (2012).
  16. D.-J. Lee, M.-S. Kang, S.-H. Lee, J.-S. Park, "Application of Capacitive Deionization for Desalination of Mining Water", J. Korean Electrochem. Soc., 17, 37 (2014). https://doi.org/10.5229/JKES.2014.17.1.37
  17. J.-H. Yeo, J.-H. Choi, "Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode", Desalination, 320, 10 (2013). https://doi.org/10.1016/j.desal.2013.04.013
  18. S.-I. Jeon, H.-R. Park, J.-G. Yeo, S.-C. Yang, C.-H. Cho, M.-H. Han, D.-K. Kim, "Desalination via a new membrane capacitive deionization process utilizing flowelectrodes." Energy Environ. Sci., 6, 1471 (2013). https://doi.org/10.1039/c3ee24443a
  19. D. R. Merrill, M. Bikson, J. G. R. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols", J. Neurosci. Methods, 141, 171 (2005). https://doi.org/10.1016/j.jneumeth.2004.10.020
  20. D.-J. Lee, J.-S. Park, "Mesoporous Carbon Electrodes for Capacitive Deionization", J. Korean Electrochem. Soc., 17, 57 (2014). https://doi.org/10.5229/JKES.2013.17.1.57
  21. J.-Y Choi, J.-H. Choi. "A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder", J. Ind. Eng. Chem., 16, 401 (2010). https://doi.org/10.1016/j.jiec.2009.08.005
  22. J.-W. Lee, K.-H. Yeon, J.-H. Song, S.-H. Moon, "Characterization of electroregeneration and determination of optimal current density in continuous electrodeionization", Desalination, 207, 276 (2007). https://doi.org/10.1016/j.desal.2006.04.070
  23. J.-H. Song, K.-H. Yeon, S.-H. Moon, "Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI)", J. Memb. Sci., 291, 165 (2007). https://doi.org/10.1016/j.memsci.2007.01.004