• Title/Summary/Keyword: ruthenium oxide

Search Result 55, Processing Time 0.022 seconds

Properties of Ru1Zr1 Alloy Gate Electrode for NMOS Devices (NMOS 소자에 대한 Ru1Zr1 합금 게이트 전극의 특성)

  • Lee, Chung-Keun;Kang, Young-Sub;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.602-607
    • /
    • 2004
  • This paper describes the characteristics of Ru-Zr alloy gate electrodes deposited by co-sputtering. The various atomic composition was made possible by controlling sputtering power of Ru and Zr. Thermal stability was examined through 600 and 700 $^{\circ}C$ RTA annealing. Variation of oxide thickness and X-ray diffraction(XRD) pattern after annealing were employed to determine the reaction at interface. Low and relatively stable sheet resistances were observed for Ru-Zr alloy after annealing. Electrical properties of alloy film were measured from MOS capacitor and specific atomic composition of Zr and Ru was found to yield compatible work function for nMOS. Ru-Zr alloy was stable up to $700^{\circ}C$ while maintaining appropriate work function and oxide thickness.

Nanocrystalline Antimony Oxide Films for Dye-Sensitized Solar Cell Applications

  • Kim, Ji-Hye;Jang, Ji-Yeon;Kim, Sung-Chul;Han, Chi-Hwan;Kim, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1204-1208
    • /
    • 2012
  • A new photoelectrode composed of $Sb_6O_{13}$ nanoparticles with the size of 20-30 nm has been prepared via thermolysis of a colloidal antimony pentoxide tetrahydrate ($Sb_2O_5{\cdot}4H_2O$) suspension. The $Sb_6O_{13}$ electrode showed good semiconducting properties applicable to dye-sensitized solar cells (DSSCs); the energy band gap was estimated to be $3.05{\pm}0.5$ eV and the position of conduction band edge was close to those of $TiO_2$ and ZnO. The DSSC assembled with the $Sb_6O_{13}$ photoelectrode and a conventional ruthenium-dye (N719) exhibited the overall photo-current conversion efficiency of 0.74% ($V_{oc}$ = 0.76 V, $J_{sc}=1.99\;mAcm{-2}$, fill factor = 0.49) under AM 1.5, $100\;mWcm^{-2}$ illumination.

Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell (MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.340-347
    • /
    • 2022
  • In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

Effect of pH in Sodium Periodate based Slurry on Ru CMP (Sodium Periodate 기반 Slurry의 pH 변화가 Ru CMP에 미치는 영향)

  • Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.117-117
    • /
    • 2008
  • In MIM capacitor, poly-Si bottom electrode is replaced with metal bottom electrode. Noble metals can be used as bottom electrodes of capacitors because they have high work function and remain conductive in highly oxidizing conditions. In addition, they are chemically very stable. Among novel metals, Ru (ruthenium) has been suggested as an alternative bottom electrode due to its excellent electrical performance, including a low leakage of current and compatibility to high dielectric constant materials. Chemical mechanical planarization (CMP) process has been suggested to planarize and isolate the bottom electrode. Even though there is a great need for development of Ru CMP slurry, few studies have been carried out due to noble properties of Ru against chemicals. In the organic chemistry literature, periodate ion ($IO_4^-$) is a well-known oxidant. It has been reported that sodium periodate ($NaIO_4$) can form $RuO_4$ from hydrated ruthenic oxide ($RuO_2{\cdot}nH_2O$). $NaIO_4$ exist as various species in an aqueous solution as a function of pH. Also, the removal mechanism of Ru depends on solution of pH. In this research, the static etch rate, passivation film thickness and wettability were measured as a function of slurry pH. The electrochemical analysis was investigated as a function of pH. To evaluate the effect of pH on polishing behavior, removal rate was investigated as a function of pH by using patterned and unpatterned wafers.

  • PDF

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

Mechanistic Studies on the Oxidation of Triphenylphosphine by $[(tpy)(bpy)Ru^{IV}=O]^{2+}$, Structure of the Parent Complex $[(tpy)(bpy)Ru^{II}-OH_2]^{2+}$

  • 석원경;김미영;Yoshinobu Yokomori;Derek J. Hodgson;Thomas J. Meyer
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.619-624
    • /
    • 1995
  • Oxidation of triphenylphosphine to triphenylphosphine oxide by [(tpy)(bpy)Ru(O)]2+ (tpy is 2,2':6',2"-terpyridine and bpy is 2,2'-bipyridine) in CH3CN has been studied. Experiments with the 18O-labeled oxo complex show that transfer of oxygen from [(tpy)(bpy)RuⅣ=O]2+ to triphenylphosphine is quantitative within experimental error. The reaction is first order in each reactant with k (25.3 ℃)=1.25 × 106 M-1s-1. The inital product, [(tpy)(bpy)RuⅡ-OPPh3]2+, is formed as an observable intermediate and undergoes slow k (25 ℃)=6.7 × 10-5 s-1 solvolysis. Activation parameters for the oxidation step are ΔH≠=3.5 kcal/mol and ΔS≠=-23 eu. The geometry at ruthenium in the complex cation, [(tpy)(bpy)RuⅡ(OH2)]2+, is approximately octahedral with the ligating atoms being the three N atoms of the tpy ligand, the two N atoms of the bpy ligand, and the oxygen atom of the aqua ligand. The Ru-O bond length is 2.136(5) Å.

Optical Hydrogen Sensor Based on Gasochromic $RuO_2{\cdot}xH_2O$ Thin Film ($RuO_2{\cdot}xH_2O$ 박막의 가스채색 현상을 이용한 수소검지 광센서)

  • Cheong, Hyeon-Sik;Jo, Hyun-Chol;Kim, Kyung-Moon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • We studied the electrochromic properties of hydrated amorphous ruthenium oxide ($RuO_2{\cdot}xH_2O$) thin films using in-situ Raman spectroscopy during electrochemical charging/discharging cycles. We have found that the principal effect of hydrogen insertion into $RuO_2{\cdot}xH_2O$ is reduction of $Ru^{4+}\;to\;Ru^{3+}$, and not formation of new bonds involving hydrogen. We compared the changes in the Raman spectrum of a gasochromic $Pd/RuO_2{\cdot}xH_2O$ film as it is exposed to hydrogen gas with that of electrochemical hydrogen insertion. We tested the changes in the optical transmission of the $Pd/RuO_2{\cdot}xH_2O$ film when exposed to hydrogen gas.

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.