References

1. Giddings, J. C. Science 1993, 260, 1456.
2. Giddings, J. C. Chem. Eng. News 1988, 66. 34.
3. Caldwell, K. D. Anal. Chem. 1988, 60, 959A.
4. Martin, M.; Williams, P. S. In Theoretical Advancement in Chromatography and Related Separation Techniques; NATO ASI Series C Mathematical and Physical Sciences; Dondi. F.; Guiochon, G. Eds.; Kluwer: Dordrecht, 1992; Vol. 383, p 513.
5. Giddings, J. C.; Yang, F. J. F.; Myers, M. N. Anal. Chem. 1974, 46, 1917.
6. Giddings, J. C.; Ratanathanawongs, S. K.; Moon, M. H. KONA: Powder and Particle 1991, 9, 200.
7. Myers, M. N.; Caldwell, K. D.; Giddings, J. C. Sep. Sci. Technol. 1974, 9, 47.
8. Giddings, J. C.; Hovingh, M. E.; Thomson, G. H. J. Phys. Chem. 1970, 74, 4291.
9. Caldwell, K. D.; Kesner, L. F.; Myers, M. N.; Giddings,
J. C. Science 1972, 176, 296.
10. Giddings, J. C.; Yang, F. J. F.; Myers, M. N. Science 1976, 193, 1244.
11. Moon, M. H.; Giddings, J. C. J. Pharm. Biomed. Anal. 1993, $11,911$.
12. Litzen, A.; Wahlund, K.-G. J. Chromatogr. 1989, 476, 413.
13. Liu, M. K.; Li, P.; Giddings, J. C. Protein Science 1993, 2, 1520.
14. Giddings, J. C.; Benincasa, M. A.; Liu, M. K.; Li, P. J. Liq. Chromatogr. 1992, 27, 1489.
15. Hansen, M. E.; Giddings, J. C. Anal. Chem. 1989, 61, 811.
16. Moon, M. H.; Williams, P. S.; Giddings, J. C. Unpublished results.
17. Giddings, J. C.; Yang, F. J. F.; Myers, M. N. Anal. Chem. 1976, 48, 1126.
18. Giddings, J. C.; Williams, P. S.; Benincasa, M. A. J. Chromatogr. 1992, 627, 23.

Mechanistic Studies on the Oxidation of Triphenylphosphine by $\left[(\mathbf{t p y})(\mathbf{b p y}) \mathbf{R u} \mathbf{I V}^{\mathbf{V}}=\mathbf{O}\right]^{2+}$, Structure of the Parent Complex $\left[(t p y)(b p y) \mathbf{R u}^{112}-\mathbf{O H}_{2}\right]^{2+}$

Won Kyung Seok ${ }^{\bullet \dagger}$, Mee Yung Kim ${ }^{\dagger}$, Yoshinobu Yokomori ${ }^{\text { }}$, Derek J. Hodgson ${ }^{* *}$, and Thomas J. Meyer* ${ }^{*}$
${ }^{\dagger}$ Department of Chemisty, Dongguk University, Seoul 100-715, Korea
${ }^{\ddagger}$ Department of Chemistry, The National Defence Academy, Hashirimizu, Yokosuka 239, Japan
${ }^{+}$Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, U.S.A.
${ }^{8}$ Department of Chemistry, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599.3290, U.S.A. Received March 23, 1995

Abstract

Oxidation of triphenylphosphine to triphenylphosphine oxide by [(tpy)(bpy)Ru(O)] ${ }^{2+}$ (tpy is $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine and bpy is $2,2^{\prime}$-bipyridine) in $\mathrm{CH}_{3} \mathrm{CN}$ has been studied. Experiments with the ${ }^{19} \mathrm{O}$-labeled oxo complex show that transfer of oxygen from $\left[(t p y)(b p y) \mathrm{Ru}^{\mathrm{tv}}=0\right]^{2+}$ to triphenylphosphine is quantitative within experimental error. The reaction is first order in each reactant with $k\left(25.3{ }^{\circ} \mathrm{C}\right)=1.25 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The inital product, [(tpy)(bpy) Ru^{D} - $\left.\mathrm{OPPh}_{3}\right]^{2+}$, is formed as an observable intermediate and undergoes slow $k\left(25{ }^{\circ} \mathrm{C}\right)=6.7 \times 10^{-5} \mathrm{~s}^{-1}$ solvolysis. Activation parameters for the oxidation step are $\Delta H^{*}=3.5 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{*}=-23$ eu. The geometry at ruthenium in the complex cation, $\left[(t p y)(b p y) R u^{\prime \prime}\left(\mathrm{OH}_{2}\right)\right]^{2+}$, is approximately octahedral with the ligating atoms being the three N atoms of the tpy ligand, the two N atoms of the bpy ligand, and the oxygen atom of the aqua ligand. The Ru-O bond length is $2.136(5)$ A.

Introduction

Metal-oxo reagents such as KMnO_{4} or $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are useful oxidants but difficult to control in terms of product distribution. The mechanisms of these reactions are hard to unravel because of the multiple oxidation states involved. ${ }^{1}$
A series of polypyridyl Ru and Os mono-oxo complexes are known, which have proved to be versatile stoichiometric and/or catalytic oxidants toward a variety of organic and inorganic substrates based on $\mathrm{Ru}^{\mathrm{IV} / 11}$ and $\mathrm{Ru}^{\mathrm{mI/I}}$ couples. ${ }^{2}$ The
cleavage of DNA has also been reported. ${ }^{3}$ The results of mechanistic studies based on $\left[(\mathrm{bpy})_{2}(\mathrm{py}) \mathrm{Ru}^{\mathrm{tv}}=\mathrm{O}^{2+}\right.$ (bpy is $2,2^{\prime}$-bipyridine and py is pyridine) as oxidant with a variety of substrates have demonstrated many reaction pathways." There is far less mechanistic information available for [(tpy) (bpy) $\left.\mathrm{Ru}^{\mathrm{rv}}=\mathrm{O}\right]^{2+}$ as oxidant even though it is of value in catalytic reactions. ${ }^{5}$ Reduction potentials relating its three oxidation states at $\mathrm{pH}=7$ (vs SSCE at $22 \pm 2{ }^{\circ} \mathrm{C}$) are shown in the Latimer diagram in equation 1.

$$
\begin{align*}
& \text { (tpy)(bpy)Ru }{ }^{\mathrm{IV}}=\mathrm{O}^{2+} \xrightarrow{0.62 \mathrm{~V}}(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{[\mathrm{II}} \cdot \mathrm{OH}^{2+} \xrightarrow{0.49 \mathrm{~V}}(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{\mathrm{II}} \mathrm{OH}_{2}{ }^{2+} \\
& 0.56 \mathrm{~V} \tag{1}
\end{align*}
$$

In this manuscript we report on the kinetics and mechanisms of oxygenation of triphenylphosphine by [(tpy)(bpy) $\left.\mathbf{R u}{ }^{\text {IV }}(0)\right]^{2+}$ and the X-ray crystal structure of the parent complex $\left[(t p y)(\mathrm{bpy}) \mathrm{Ru}^{\mathrm{l}}\left(\mathrm{OH}_{2}\right)\right]^{2+}$.

Experimental Section

Materials. Triphenylphosphine was recrystallized twice from ethanol and checked by FT-IR to confirm the absence of the phosphine oxide ($v_{\mathrm{P}=0}$) at $1194 \mathrm{~cm}^{-1}$ in a nujol mull. ${ }^{6}$ Acetonitrile was purified by distillation from $\mathrm{P}_{2} \mathrm{O}_{5}$ under an Ar atmosphere. Water was purified by using a Nanopure ${ }^{\mathrm{TM}}$ (Barnstead) water system. ${ }^{18}$ O-labeled water (isotope purity> 97.1\%) was purchased from Isotec and used as received.

Preparations. $\quad\left[(t p y)(b p y) \mathrm{Ru}^{\mathrm{II}}-\mathrm{OH}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2},[(t p y)(b p y)$
 (bpy) $\left.\mathrm{Ru}^{\mathrm{FV}}={ }^{18} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ were prepared by previously described procedures. ${ }^{\text {sc }}$

Instrumentation. Routine UV-visible spectra and slow kinetic runs were recorded on Hewlett-Packard 8452A diode array or Cary-14 spectrophotometers. FT-IR spectra were obtained on a Nicolet Mode 20DX FT-IR spectrophotometer as either nujol mull or in solution by using NaCl plates. Electrochemical measurements were conducted with a PAR Model 173 potentiostat/galvanostat connected to a PAR Model 175 universal programmer as a sweep generator for voltammetry experiments. The cyclic voltametric measurements utilized a Teflon-sheathed glassy-carbon disk (1.5 mm radius) as a working electrode, a platinum wire as the auxiliary electrode, and a saturated sodium chloride calomel reference electrode (SSCE) in a one-compartment cell. Fast kinetic measurements were carried out by using a Hi -Tech Scientific SF-51 stopped-flow apparatus with fiber-optic coupling to either Beckman DU or Harrick rapid scan monochromators. The system was interfaced to a Zenith 158 computer system employing On Line Instrument System (OLIS) data acquisition hardware and software (Jefferson, GA). All of the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data were obtained with an IBM AC 290 spectrophometer or a Varian Gemini 200 MHz spectrometer by using $\mathrm{CD}_{3} \mathrm{CN}$ as solvent. The chemical shift parameters were presented in parts per million (δ) downfield from tetramethylsilane (TMS) as an internal reference while the ${ }^{3!} \mathrm{P}$ chemical shifts were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{3}$.

UV-visible measurements. The complex [(tpy)(bpy) $\left.\mathrm{Ru}^{11}-\mathrm{NCCH}_{3}\right]^{2+}$ was prepared in situ by dissolving [(tpy)(bpy) $\left.\mathrm{Ru}^{11}-\mathrm{OH}_{2}\right]^{2+}$ in $\mathrm{CH}_{3} \mathrm{CN}$.? Spectral changes with time showed that the half-life ($t_{1 / 2}$) of solvation was $15 \mathrm{~min}, k=1.1 \times 10^{-3}$ $s^{-1.8}$ The stoichiometry of the reaction between [(tpy)(bpy) $\left.\mathrm{Ru}^{\mathrm{IV}}=0\right]^{2+}$ and PPh_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ was determined in a spectrophometric titration where the $\mathrm{Ru}(\mathrm{IV})$: PPh_{3} mole ratio was varied beween 0 and 2 by adding different volumes of a stock solution of PPh_{3} to equal volumes of a $\mathrm{Ru}(\mathrm{IV})$ stock solution and diluting each by 10 mL . No precautions were taken to exclude air.

Infrared measurements. 5 mg of freshly recrystalized PPh_{3} in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}(1.9 \mathrm{mM})$ was added to 14 mg of solid $\left[(t p y)(b p y) \mathrm{Ru}^{\mathrm{N}}(\mathrm{O})\right]\left(\mathrm{ClO}_{4}\right)_{2}(2.0 \mathrm{mM})$, and infrared spectra in a 1 mm pathlength NaCl cell were recorded at

Table 1. Crystal Data for $\left[(t \mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}\left(\mathrm{OH}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$

formula	$\mathrm{RuC}_{25} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Cl}_{2} \mathrm{H}_{21}$
f(s), amu	707.5
System, Space group	Orthorhombic, Pbca
a, \AA	10.854(12)
b, \AA	32.738(7)
c, \AA	15.349(4)
V, \AA	5454
z	8
t, ${ }^{\circ} \mathrm{C}$	20
density (calcd), $\mathrm{g} / \mathrm{cm}^{3}$	1.723
crystal shape, mm	$0.14 \times 0.05 \times 1.27$
radiation	Mo $\mathrm{K} \alpha(\lambda=0.7107)$
	Zr -filtered
scan mode	20- ω
scan speed, deg/min	2
2θ limits, deg	$0<20<50$
data collected	+h+k+1
P facter	0.02
No. of reflection measured	4017
No. of reflection used	2454
No. of variables	379
Collection	Lorentz-Polarization
	Extraction
R	0.079
$R w$	0.057

1 min intervals in the region $1300-1050 \mathrm{~cm}^{-1}$. After 1 day, infrared analysis for OPh_{3} based on $v(\mathrm{P}=0)$ at $1194 \mathrm{~cm}^{-1}$ showed that free $\mathrm{O}=\mathrm{PPh}_{3}$ was formed quantitatively. [(tpy) (bpy) $\left.\mathrm{Ru}^{1 \mathrm{~V}}\left({ }^{18} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, containing an estimated $60 \%{ }^{18} \mathrm{O}$, was allowed to react with PPh_{3} by the same procedure. As expected for O-atom transfer, both $v_{P}={ }^{16} 0\left(1194 \mathrm{~cm}^{-1}\right)$ and $v_{P}={ }^{18} 0$ ($1161 \mathrm{~cm}^{-1}$) were observed and in the expected ratio as shown by comparing the integrated intensities. Labeled product was shifted approximately $30 \mathrm{~cm}^{-1}$ to lower energy than the previously established standards.

Kinetic measurements. The oxidation of PPh_{3} by Ru (IV) initially affords an intermediate with a $\lambda_{\text {mar }}$ at 485 nm . The rate of the reduction of Ru (IV) to this intermediate was followed by the absorbance changes against time at 468 nm . This wavelength is an isosbestic point for the intermediate and the final solvolysis product, $\left[(t p y)(b p y) \mathrm{Ru}^{11}-\mathrm{NCCH}_{3}\right]^{2-}$ $\left(\lambda_{\max }=456 \mathrm{~nm}\right)$. Stopped-flow measurements of the rate of formation of the intermediate were carried out on the HiTech Scientific SF-5l stopped-flow apparatus under pseudo-first-order conditions with PPh_{3} in excess. Reported values of the rate constants are averages of five or more experiments based on the same stock solutions.

X-ray crystallography. Brown black crystals were obtained from a saturated NaClO_{4} solution containing [(tpy) (bpy) $\left.\mathrm{Ru}-\mathrm{OH}_{2}\right]^{2+}$ by using slow evaporation. Cell constants, obtained at 293 K from least-squares refinement of 25 reflections on an Enraf-Nonius CAD 4 diffractometer equipped

Figure 1. An ORTEP drawing of the $\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}\left(\mathrm{OH}_{2}\right)\right]^{2+} \mathrm{ca}-$ tion with the hydrogen atoms omitted for the sake of clarity.

Table 2. Principal Bond Distances (\AA) in [(tpy)(bpy)Ru(OH2)] $\left(\mathrm{ClO}_{4}\right)_{2}^{4}$

bond	distance	bond	distance
Ru-OW	$2.136(5)$	C1-C2	$1.38(1)$
Ru-N1	$2.053(6)$	C1-C6	$1.45(1)$
Ru-N2	$1.960(6)$	C2-C3	$1.41(1)$
Ru-N3	$2.062(7)$	C3-C4	$1.35(1)$
Ru-N4	$2.068(6)$	C4-C5	$1.39(1)$
Ru-N5	$2.015(6)$	C6-C7	$1.37(1)$
C11-O11	$1.361(8)$	C7-C8	$1.39(1)$
C11-O12	$1.361(7)$	C8-C9	$1.37(1)$
C11-O13	$1.407(7)$	C9-C10	$1.40(1)$
C11-014	$1.400(7)$	C10-C11	$1.44(1)$
C11-O21	$1.356(9)$	C11-C12	$1.30(1)$
C12-O22	$1.33(1)$	C12-C13	$1.35(1)$
C12-023	$1.25(1)$	C13-C14	$1.38(1)$
C12-O24	$1.354(9)$	C14-C15	$1.34(1)$
N1-C1	$1.376(9)$	C16-C17	$1.36(1)$
N1-C5	$1.38(1)$	C16-C21	$1.45(1)$
N1-C6	$1.345(9)$	C17-C18	$1.34(1)$
N3-C10	$1.35(1)$	C18-C19	$1.37(1)$
N3-C11	$1.35(1)$	C19-C20	$1.35(1)$
N3-C15	$1.32(1)$	C21-C22	$1.40(1)$
N4-C16	$1.35(1)$	C22-C23	$1.36(1)$
N4-C20	$1.32(1)$	C23-C24	$1.35(1)$
N5-C21	$1.34(1)$	C24-C25	$1.39(1)$
N5-C25	$1.35(1)$		

${ }^{\text {a }}$ The numbering scheme is taken from Figure 1.
with a Mo tube and a Zr filter, are given in Table 1. The data were collected and reduced by previously described procedure. ${ }^{9}$ The observed systematic absences of $h=2 n+1$ for $h k 0, k=2 n+1$ for $h k 0$, and $l=2 n+1$ for $h O l$ uniquely

Table 3. Bond Angles (deg) in [(tpy)(bpy)Ru(OH2)](C1O $)_{2}{ }^{\text {a }}$

bond	angle	bond	angle
OW-Ru-N1	$88.5(2)$	C1-C2-C3	$10.6(9)$
OW-Ru-N2	$86.9(2)$	C2-C3-C4	$117.2(9)$
OW-Ru-N3	$87.4(2)$	C3-C4-C5	$122.1(9)$
OW-Ru-N4	$96.9(3)$	N1-C5-C4	$121.2(9)$
OW-Ru-N5	$174.9(3)$	N2-C6-C1	$114.3(7)$
N1-Ru-N2	$79.8(2)$	C1-C6-C7	$126.2(8)$
N1-Ru-N3	$158.7(3)$	C6-C7-C8	$118.3(9)$
N1-Ru-N4	$99.3(2)$	C7-C8-C9	$121.9(9)$
N1-Ru-N5	$93.2(2)$	C8-C9-C10	$118.4(8)$
N2-Ru-N3	$79.1(3)$	N2-C10-C9	$118.2(9)$
N2-Ru-N4	$176.1(3)$	N2-C10-C11	$112.7(9)$
N2-Ru-N5	$98.1(3)$	C9-C10-C11	$129.1(9)$
N3-Ru-N4	$102.0(3)$	N3-C11-C10	$116.5(8)$
N3-Ru-N5	$92.7(2)$	N3-C11-C12	$119.8(9)$
N4-Ru-N5	$78.1(3)$	C11-C12-C13	$119(1)$
O111-C11-O12	$110.8(6)$	C12-C13-C14	$120.3(9)$
O11-C11-O13	$113.2(6)$	C13-C14-C15	$116.3(9)$
O11-C11-O14	$110.06)$	N3-C15-C14	$125(1)$
O12-C11-O13	$109.1(4)$	N4-C16-C17	$121.0(9)$
O12-C11-O14	$108.1(6)$	N4-C16-C21	$114.3(8)$
O13-C11-O14	$105.4(5)$	C17-C18-C19	$118(1)$
O21-C12-O22	$111.9(9)$	C18-C19-C20	$119(1)$
O21-C12-O23	$104.2(8)$	N4-C20-C19	$123(1)$
O21-C12-O24	$113.1(7)$	N2-C6-C7	$119.5(8)$
O22-C12-O23	$109(1)$	C10-C11-C12	$123(1)$
O22-C12-O24	$102.6(7)$	N5-C21-C16	$114.9(9)$
O23-C12-O24	$115(1)$	C17-C16-C21	$124(1)$
C1-N1-C5	$117.6(7)$	C16-C17-C18	$120(1)$
C6-N2-C10	$123.6(8)$	N5-C21-C22	$119.1(9)$
C11-N3-C15	$118.3(8)$	C21-C22-C23	$121.5(9)$
C16-N4-C20	$117.8(8)$	C22-C23-C24	$119.9(9)$
C21-N5-C25	$118.4(8)$	C16-C21-C22	$126.0(9)$
N1-C1-C2	$121.3(8)$	C23-C24-C25	$117.1(9)$
N1-C1-C6	$114.6(7)$	N5-C25-C24	$123.9(8)$
C2-C1-C6	$124.1(8)$		

${ }^{a}$ The numbering scheme is taken from Figure 1.
define the space group as Pbca (No. 61).
The location of the ruthenium atom was determined by examination of a Patterson function, and the positions of all other atoms were located from subsequent difference Fourier maps. The locations of 19 of 21 hydrogen atoms in the structure were calculated on the basis of the geometries at the carbon atoms ($\mathrm{C}-\mathrm{H}=0.95 \AA$). The two hydrogen atoms on the aqua ligand were found in a difference map. but attempts to refine these parameters were unsuccessful. Consequently, the final least-squares calculation included anisotropic refinement of the 42 atoms for a total of 379 variables and 2454 reflections.

A final difference Fourier map was featureless with no peak in excess of $0.33 \mathrm{e}^{-3}$. The atomic positional parameters (Table SI), the hydrogen atom positional parameters (Table SII), listings of thermal parameters (Table SIII), and structural amplitudes (Table SIV) are available as supple-

Figure 2. Succesive spectral changes taken at 1 min intervals after mixing $\mathrm{PPh}_{3}\left(3 \times 10^{-3} \mathrm{M}\right)$ and $[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}(\mathrm{O})]^{2+}\left(3 \times 10^{-5}\right.$ $\mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN}$. The initial spectrum of $[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}(0)]^{2+}$ is shown as (A).
mental materials.

Results

Structure of $\left[(t p y)(b p y) R u\left(\mathrm{OH}_{2}\right)\right]^{2+}$. A perspective drawing of the complex with the numbering scheme of the atoms is shown in Figure 1.

The interatomic distances are presented in Table 2, and bond angles in Table 3. The ruthenium(II) center has approximately octahedral geometry. The three nitrogen atoms of terpyridine and one nitrogen atom (N4) of bipyridine are coordinated in the equatorial positions, while the other nitrogen (N5) of bipyridine and the oxygen atom of water are in the axial position. The three pyridine rings of terpyridine are nearly coplanar with no deviations from the plane larger than $0.19 \AA$ The two pyridine rings of bipyridine are also coplanar (max. deviation $=0.08 \AA$). These two planes are almost perpendicular, the interplanar angle being 87°. The only significant deviation from octahedral geometry at Ru is caused by the compression (to $158.7(3)^{\circ}$) of the trans $\mathrm{N}(1)$ -$\mathrm{Ru}-\mathrm{N}(3)$ angle subtended by the nitrogen atoms of the terpyridine ligand.

There are two perchlorate anions in the asymmetrical unit. The thermal motion associated with two of the perchlorate oxygen atoms, $O(22)$ and $O(23)$, is very large, which might suggest the presence of some disorder. However no significant peaks could be found in a final difference Fourier.

UV-visible Spectral changes. The UV-visible spectral changes during the reaction of $[(t p y)(\mathrm{bpy}) \mathrm{Ru}(\mathrm{O})]^{2+}$ with PPh_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature are shown in Figure 2.

The initally featureless spectrum of $[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}(\mathrm{O})]^{2+}$ (above 380 nm) changed rapidly to give a new species with $\lambda_{\text {max }}=485 \mathrm{~nm}$ upon addition of PPh_{3}. The subsequent, far slower, spectral changes in Figure 2 are consistent with solvolysis of the initial intermediate by $\mathrm{CH}_{3} \mathrm{CN}$ to yield $[(t \mathrm{tpy})$ (bpy)Ru $\left.{ }^{\text {Il }}\left(\mathrm{NCCH}_{3}\right)\right]^{2+}$ with $\lambda_{\text {max }}=456 \mathrm{~nm}$, equation $2 .{ }^{7,10}$

The spectrum of the intermediate is typical of other polypyridyl complexes of $\mathrm{Ru}(\mathrm{II})$ and consists of metal-to-jigand-
charge transfer (MLCT) bands between $\mathrm{Ru}(\mathrm{II})$ and both tpy and bpy as acceptor ligands. For example, for $\left[(t p y)(b p y) R u{ }^{\prime \prime}-\right.$ $\left.\mathrm{OH}_{2}\right]^{2+}$ in $\mathrm{H}_{2} \mathrm{O}, \lambda_{\text {max }}=456 \mathrm{~nm}^{5}$ and for $\left[(\mathrm{bpy}) 2(\mathrm{py}) \mathrm{Ru}\left(\mathrm{OPh}_{3}\right)\right]^{2+}$ in $\mathrm{CH}_{3} \mathrm{CN}, \lambda_{\text {max }}=479 \mathrm{~nm}$. ${ }^{7}$

Product Analysis and Stoichiometry. The reaction between $\left[(t p y)(b p y) \mathrm{Ru}^{\mathrm{ry}}(\mathrm{O})\right]^{2+}$ and PPh_{3} was investigated by spectrophotometric titration. With the addition of PPh_{3}, the visible absorption maximum at 456 nm for [(tpy)(bpy) $\left.\mathrm{Ru}^{\mathrm{II}}-\mathrm{NCCH}_{3}\right]^{2+}$ increases until a mole ratio $\left(\mathrm{PPh}_{3} / \mathrm{Ru}\right)$ of $1: 1$ was reached past which there were no further changes. The measurements at 456 nm were made after sovolysis of the triphenylphosphine oxide complex had occurred. A blank soJution of $\mathrm{Ru}(\mathrm{IV})$ without added PPh_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ was stable over the timescale of the experiment. The free $\mathrm{O}=\mathrm{PPh}_{3}$ obtained after precipitation of ruthenium complex was quantitative to PPh_{3}.

$$
\begin{align*}
{\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{\mathrm{rv}}=\right.} & \mathrm{O}]^{2+}+\mathrm{PPh}_{3} \xrightarrow{\mathrm{CH}_{3} \mathrm{CN}} \\
& {\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{\mathrm{II}}-\mathrm{NCCH}_{3}\right]^{2+}+\mathrm{O}=\mathrm{PPh}_{3} } \tag{2}
\end{align*}
$$

The reaction was also followed by FT-IR. Shortly after mixing 5 mg of triphenylphosphine (19 mM) with 14 mg of $\left[(t p y)(b p y) R u^{1 v}=0\right]^{2+}(20 \mathrm{mM})$ in 1 mL of $\mathrm{CH}_{3} \mathrm{CN}, v(\mathbf{P}$ $=0$) appeared at $1161 \mathrm{~cm}^{-1.11}$ Over the period of slow solvolysis in Figure 2, the band at $1161 \mathrm{~cm}^{-1}$ decreased in intensity while the $1194 \mathrm{~cm}^{-1}$ peak of free OPPh_{3} increased. The decrease in $\mathrm{v}(\mathrm{P}=0)$ for bound OPPh_{3} is consistent with O bound triphenylphosphine oxide. ${ }^{11}$

The reaction was also followed by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR in the bipyridine region. For a reaction mixture consisting of 19 mM of $\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{\mathrm{IV}}(0)\right]^{2+}$ and 20 mM of PPh_{3} in 1 mL of $\mathrm{CD}_{3} \mathrm{CN}$, changes in the $6^{\boldsymbol{r}}$ proton resonance of bipyridine from 9.2 to 10.0 ppm were followed with time. Shortly after mixing, resonances at 9.75 ppm and 9.60 ppm were present. After 4 h , the resonance at 9.75 ppm decreased in intensity with concommitant increase in the resonance at 9.60 ppm , which by independendent measurement, corresponds to $\left[(t p y)(b p y) R u^{I I}-\mathrm{NCCD}_{3}\right]^{2+}$. After 16 h , only the resonance at 9.60 ppm was detected.

In a solution formed by mixing 7 mg of $\mathrm{PPh}_{3}(2.8 \mathrm{mM})$ and 14 mg of $[(t p y)(b p y) R u(O)]^{2+}(2.0 \mathrm{mM})$ in 10 mL of $\mathrm{CH}_{3} \mathrm{CN},{ }^{31} \mathrm{P}$ resonances appeared at -4.5 ppm for PPh_{3} and a second at 49.5 ppm arising from the intermediate. After 1 h , the resonance at 49.5 ppm had decreased with simultaneous increase in the 27.4 ppm resonance for $\mathrm{O}=\mathrm{PPh}_{3}$. When the reaction was complete, only the resonance at 27.4 ppm was observed.

Kinetics. The rate of the formation of the intermediate in $\mathrm{CH}_{3} \mathrm{CN}$ was studied by monitoring absorbance-time traces at 468 nm by stopped-flow. Under pseudo-first-order conditions with PPh_{3} in excess, the kinetics of formation of [(tpy) (bpy) $\left.\mathrm{Ru}^{\text {II }}-\mathrm{OPPh}_{3}\right]^{2+}$ were cleanly first order in $\left[\mathrm{PPh}_{3}\right]$. The kinetics data are summarized in Table 4. At $25.3^{\circ} \mathrm{C}, k=1.25$ $\times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ was averaged over five concentrations of PPh_{3} in pseudo-first-order excess. From rate constant measurements as a function of temperature and plots of $\ln (k / T)$ vs $1 / T$ according to reaction rate theory, ${ }^{12} \Delta H^{*}=3.5 \pm 0.5$ $\mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\star}=-23 \pm 3 \mathrm{eu}$. For solvolysis of [(tpy)(bpy) $\left.\mathrm{Ru}^{11}\left(\mathrm{OPPh}_{3}\right)\right]^{2+}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $25.3^{\circ} \mathrm{C}, t_{1 / 2}=250 \mathrm{~min}(k=6.7 \times$ $10^{-5} \mathrm{~s}^{-1}$) as an average of five kinetic runs.

Table 4. Kinetic Data for the Initial Redox Reaction between Triphenylphosphine and [(tpy)(bpy)Ru $\left.\mathrm{u}^{\mathrm{N}}=0\right]^{2+} \mathrm{IN} \mathrm{CH}_{3} \mathrm{CN}$

$10^{5} \times[\mathrm{Ru}(\mathrm{TV})], \mathrm{M}$	$10^{4} \times\left[\mathrm{PPh}_{3}\right], \mathrm{M}$	$10^{-6} \times k^{a}, \mathrm{M}^{-1} \mathrm{~S}^{-1}$	$\mathrm{~T},{ }^{\circ} \mathrm{C}$
1.52	2.04	0.92 ± 0.01	15.7
1.52	4.07	0.97 ± 0.04	15.8
1.62	2.07	1.17 ± 0.03	25.1
1.62	3.10	1.25 ± 0.05	25.3
1.62	4.14	1.29 ± 0.08	25.4
1.68	1.53	1.44 ± 0.07	33.8
1.68	2.04	1.48 ± 0.06	33.8
1.68	4.07	1.52 ± 0.10	33.9
1.86	1.53	1.68 ± 0.02	39.7
1.86	3.05	1.67 ± 0.04	39.7

${ }^{a}$ Each rate constant is the average of four or more experimental results. Second-order rate constants were caculated from $k_{\text {oes }} d$ [PPh_{3}] under pseudo-first-order condition in excess PPh_{3} where $k_{\text {shs }}$ is the pseudo-first-order rate constant.

Labeling Studies. The oxidant $[(t p y)(b p y) R u(O)]^{2+}$ containing 60 atom $\%$ of $\left[\mathrm{Ru}\left({ }^{18} \mathrm{O}\right)\right]^{2+}$ was allowed to react with PPh_{3} in $\mathrm{CH}_{3} \mathrm{CN}$, and the product solution analyzed by FT-IR spectrophotometer. Quantitative analysis of ${ }^{18} \mathrm{OPPh}_{3}$ ($1161 \mathrm{~cm}^{-1}$) and $\mathrm{OPPh}_{3}\left(1194 \mathrm{~cm}^{-1}\right)$ showed essentially complete oxygen transfer from $\left[(t p y)(b p y) R u^{\mathrm{VV}}=0\right]^{2+}$ to $\mathrm{PPh}_{3}{ }^{8}$ A test for trace water as the oxygen source was made by allowing unlabeled $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O}^{2+}$ and PPh_{3} to react in $\mathrm{CH}_{3} \mathrm{CN}$ including 1 drop of ${ }^{18} \mathrm{OH}_{2}\left(95 \%{ }^{18} \mathrm{O}\right)$. This showed that less than 5% of the OPPh_{3} formed had incorporated the label. The small degree of ${ }^{18} \mathrm{O}$ incorporation probably comes from exchange between $\left[(t p y)(b p y) \mathrm{Ru}^{\text {lv }}=\mathrm{O}\right]^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$. ${ }^{7}$
Electrochemical Measurements. Although reduction of $\left[(t p y)(b p y) \mathrm{Ru}^{[\mathrm{V}}(\mathrm{O})\right]^{2+}$ to $\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{\text {III }}(\mathrm{O})\right]^{+}$is chemically irreversible, it can be estimated that $E_{1 / 2}$ is less than 0.1 V vs SSCE. For the $\mathrm{PPh}_{3}{ }^{0 /+}$ couple, oxidation of PPh_{3} is also chemically irreversible with $E_{1 / 2}>1.32 \mathrm{~V} v \mathrm{~s}$. SSCE under the same conditions. ${ }^{7}$

Discussion

From the spectroscopic observations, the mechanism of oxygenation of PPh_{3} by $\left[(t p y)(b p y) \mathrm{Ru}^{1 v}(\mathrm{O})\right]^{2+}$ involves a fast 2 electron transfer to give bound OPPh_{3} in [(tpy) (bpy) Ru ${ }^{\mathrm{i}}$ $\left.\mathrm{OPPh}_{3}\right]^{2+}$ followed by a far slower solvolysis,

$$
\begin{gather*}
{\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{\mathrm{NV}}=\mathrm{O}^{2+}+\mathrm{PPh}_{3} \xrightarrow{k\left(25^{\circ} \mathrm{C}\right)=1.25 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}}\right.} \\
{\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{\left.\mathrm{II}-\mathrm{OPPh}_{3}\right]^{2+}}\right.} \\
\downarrow k\left(25{ }^{\circ} \mathrm{C}\right)=6.7 \times 10^{-5} \mathrm{~s}^{-1} \\
{\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}^{11}-\mathrm{NCCH}_{3}\right]^{2+}+\mathrm{OPPh}_{3}} \tag{3}
\end{gather*}
$$

This mechanism is consistent with the result of the ${ }^{18} \mathrm{O}$-isotopic labeling study which shows that net oxygen atom transfer from $\mathrm{Ru}^{\mathrm{lv}}=\mathrm{O}^{2+}$ to PPh_{3} occurs and with the mechanism established for the reaction between PPh_{3} and $\left[(b p y)_{2}(\mathrm{py})\right.$ $\left.\mathrm{Ru}^{\text {IV }}(\mathrm{O})\right]^{2+}$ in $\mathrm{CH}_{3} \mathrm{CN}^{[3}$

There are serveral mechanistic possibilities for the initial redox step which have been discussed elsewhere. ${ }^{13}$ Initial outer-sphere electron transfer is not feasible on energetic

Table 5. Comparison of Ru-O Bond Distances (\AA) with Related Complexes

Complex	Ru-O	length (\AA)	ref
$\left.\left[\mathrm{Ru}(\mathrm{tpy})(\mathrm{bpy})\left(\mathrm{OH}_{2}\right)\right](\mathrm{ClO})_{4}\right)_{2}$	$\mathrm{Ru}(\mathrm{II})-\mathrm{OH}_{2}$	2.130	this work
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{SO}_{3}\right)_{2}$	$\mathrm{Ru}(\mathrm{II})-\mathrm{OH}_{2}$	2.122	20
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{SO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$	$\mathrm{Ru}(\mathrm{III})-\mathrm{OH}_{2}$	2.049	20
$\left[\mathrm{Ru}(\mathrm{OH}) \mathrm{Cl}(\mathrm{py})_{4}\right]^{+}$	$\mathrm{Ru}(\mathrm{III})-\mathrm{OH}$	1.957	21
$\left[\mathrm{RuCl}(\mathrm{O})(\mathrm{py})_{4}\right]^{+}$	$\mathrm{Ru}(\mathrm{IV})-\mathrm{O}$	1.862	22
$[\mathrm{Ru}(\mathrm{TMC})(\mathrm{O})(\mathrm{MeCN})]^{2+}$	$\mathrm{Ru}(\mathrm{IV})-\mathrm{O}$	1.765	13
(TMC $=1,4,8,11$-tetramethyl-1,4,8,11-tetraazacyclotetradecane $)$			

grounds. By combining the two $E_{1 / 2}$ estimates for the [(tpy) (bpy)Ru(O) $]^{2+/++}$ and $\mathrm{PPh}_{3}{ }^{0 /+}$ couples, initial one electron transfer may be nonspontaneous by more than 1.0 eV . Amongst other mechanisms that have been mentioned is prior nucleophilic attack of PPh_{3} on $\mathrm{Ru}(\mathrm{IV})$ followed by migration of the coordinated phosphorous to the oxo group. ${ }^{15}$ Although seven-coordinate complexes of Ru (IV) are known, ${ }^{16}$ the formation of a seven-coordinate phosphine complex in this coordination environment seems unlikely based on steric considerations as predicted both by molecular models and related coordination chemistry. ${ }^{17}$

The most likely mechanism is a concerted O -atom transfer from $\mathrm{Ru}^{\text {IV }}=\mathrm{O}^{2+}$ to PPh_{3}. In this reaction the acceptor orbitals are the π antibonding orbitals of the Ru-oxo group which are largely $d \pi(\mathrm{Ru})$ in character ${ }^{18.19}$ With electron flow to Ru , largely O-based electron density is made available for the O-P bonding interaction.

Quantitative comparison between the reactivities of the tpy-bpy and bis/bpy-py oxo complexes torward oxidation of PPh_{3} shows that the rate constant for the former is about 7 times faster than the latter $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{py})(\mathrm{O})\right]^{2+}, 1.75 \times 10^{5}$ $\mathrm{M}^{-1} \mathrm{~s}^{-1}\left(26.5{ }^{\circ} \mathrm{C}\right)$: $[\mathrm{Ru}(\mathrm{tpy})(\mathrm{bpy})(\mathrm{O})]^{2+}, 1.25 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}(25.3$ ${ }^{\circ} \mathrm{C}$). The difference in rate constants occurs in ΔH^{*} ($\left[\mathrm{Ru}^{\mathrm{IV}}\right.$ (bpy) $\left.)_{2}(\mathrm{py})(\mathrm{O})\right]^{2+}, 4.7 \mathrm{kcal} / \mathrm{mol} ; \quad\left[\mathrm{Ru}^{\mathrm{IV}}(\mathrm{tpy})(\mathrm{bpy})(\mathrm{O})\right]^{2+}, 3.4$ $\mathrm{kcal} / \mathrm{mol}$). The ΔS^{*} values are the same within experimental error (-19 ± 3 eu for $\left[\mathrm{Ru}^{\text {iv }}(\mathrm{bpy})_{2}(\mathrm{py})(0)\right]^{2+}$ compared to -23 $\pm 3 \mathrm{eu}$ for $\left[\mathrm{Ru}^{\mathrm{N}}(\mathrm{tpy})(\mathrm{bpy})(\mathrm{O})\right]^{2+}$, consistent with a common mechanism. The higher rate constant for $[(t p y)(b p y) R u(O)]^{2+}$ reflects its higher driving force as an oxidant. The potential for the 2-electron $\mathrm{Ru}^{\mathrm{IV}}=\mathrm{O}^{2+} / \mathrm{Ru}^{\mathrm{II}}-\mathrm{OH}_{2}{ }^{2+}$ couples are 0.56 V (Equation 1) and 0.47 V vs SSCE at pH 7 . The solvolysis rate constant for $\left[(\mathrm{tpy})(\text { bpy }) \mathrm{Ru}^{11}-\mathrm{OPPh}_{3}\right]^{2+}, k\left(25{ }^{\circ} \mathrm{C}\right)=6.7 \times$ $10^{-5} \mathrm{~s}^{-1}$ is slower than for $\left[(\mathrm{bpy})_{2}(\mathrm{py}) \mathrm{Ru}^{\mathrm{n}}-\mathrm{OPPh}_{3}\right]^{2+}, k(25$ $\left.{ }^{\circ} \mathrm{C}\right)=1.5 \times 10^{-4} \mathrm{~s}^{-1}$. As in other complexes of this kind, substitution rates tend to decrease as the $\mathrm{Ru}^{1 \mathrm{tI} / \mathrm{II}}$ potential increases. Both respond to increasing stabilization of d electrons by ligand field effects.

In $\left[(t \mathrm{tg})(\mathrm{bpy}) \mathrm{Ru}-\mathrm{OH}_{2}\right]^{2+}$, the $\mathrm{Ru}-\mathrm{OH}_{2}$ bond distance of $2.136(6) \AA$, is consistent with the expected $\mathrm{Ru}-\mathrm{O}$ single bond. For comparison, Ru-O bond distances for other complexes of Ru (II), Ru (III), and $\mathrm{Ru}(\mathrm{IV})$ are listed in Table 5 .

Some of the spectroscopic results that were acquired provide insight into various aspects of the coordination chemistry. In complexes of the type $\left[(t p y)(b p y) R u^{I I}(L)\right]^{2+}$, the 6^{\prime} proton of the bipyridine ring that is near ligand L. Figure 1 , is shifted relatively further downfield compared to the remaining bipyridine protons. ${ }^{18}$ Based on the numbering
scheme in Figure 1, the 6^{\prime}-proton, which is on C20, exists out of the ring current of the aromatic terpyridine ligand and towards the sixth non-pyridyl ligand. This resonance provides a characteristic marker for the sixth ligand. For the O-bound triphenylphosphine oxide complex, the doublet for the 6^{\prime}-proton appears at 9.75 ppm and for the $\mathrm{CD}_{3} \mathrm{CN}$ complex at 9.60 ppm .

The ${ }^{31} \mathrm{P}$ NMR resonance for $\left[(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Ru}-\mathrm{OPPh}_{3}\right]^{2+}$ is at 49.5 ppm , for PPh_{3} at -4.5 ppm , and for $\mathrm{O}=\mathrm{PPh}_{3}$ at 27.4 $\mathrm{ppm} .^{20}$ The shift in the resonance between free and bound OPh_{3} reflects the depletion of electron density on the phosphorous atom by coordination to ruthenium.

The $v(\mathrm{P}=0)$ band for free triphenylphosphine oxide at $1194 \mathrm{~cm}^{-1}$ is shifted by $c a .42 \pm 6 \mathrm{~cm}^{-1}$ to lower energy when coordinated to a metal. ${ }^{119}$ The shift in $v(P=0)$ for [(tpy)(bpy) $\left.\mathrm{Ru}^{11}-\mathrm{OPPh}_{3}\right]^{2+}$ is $33 \mathrm{~cm}^{-1}$ suggesting a greater degree of $\mathrm{P}=0$ double bond character in the complex.

Acknowledgment. are made to the Korea Science and Engineering Foundation (to Won K. Seok) and the National Science Foundation under Grant No. CHE-9203311 for support of this research.

References

1. (a) Mijs, W. J.; De Jonge, C. R. H. I. Organic Syntheses by Oxidation with Metal Compounds; Plenum Press: New York, 1986. (b) Holm, R. H. Chem. Rev. 1987, 87, 1401.
2. (a) Leising, R. A.; Kubow, S. A.; Churchill, M. R.; Buttrey, L. A.; Ziller, J. W.; Takeuchi, K. J. Inong. Chem. 1990, 29, 1306. (b) Che, C. M.; Leung. W. H.; Chung, W. C. Inorg. Chem. 1990, 29, 1841. (c) Bruice, T. C. Acc. Chem. Res. 1991, 24, 243. (d) Binstead, R. A.; McGuire, M. E.; Dovletoglou, A.; Seok, W. K.; Roecker, L. E.; Meyer, T. J. J. Am. Chem. Soc. 1992, 114, 173. (e) Griffth, W. P. Chem. Soc. Rev. 1992, 179.
3. (a) Kalsbeck, W. A.; Thorp, H. H. Inorg. Chem. 1994, 33, 3417. (b) Meunier, B. Chem. Rev. 1992, 92, 1411.
4. Dovletoglou, A.; Meyer, T. J. J. Am. Chem. Soc. 1994, 116, 215 and references cited therein.
5. (a) Moyer, B. A.; Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1980, 102, 2310. (b) Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 307. (c) Thompson, M. S. Ph.D Dissertation, The Univ. of North Carolina,

Chapel Hill, NC, 1981. (d) Thompson, M. S.; De Giovani, W. F.; Moyer, B. A.; Meyer, T. J. J. Org. Chem. 1984, 49. 4972.
6. Halmann, M.; Pinchas, S. J. Chem. Soc. 1958, 3264.
7. (a) Moyer, B. A.; Sipe, B. K.; Meyer, T. J. Inorg. Chem. 1981, 20, 1475. (b) Roecker, L. E.; Dobson, J. C.; Vining, W. J.; Meyer, T. J. Inorg. Chem. 1987, 26, 779.
8. Unpublished results from Seok, W. K.
9. Graves, B. J.; Hodgson, D. J. Acta Cryst. 1982, B38, 135.
10. Seok, W. K. Bull. Korean Chem. Soc. 1993, 14, 433.
11. (a) Cotton, F. A.; Barnes, R. D.; Bannister, E. J. Chem. Soc. 1960, 2199. (b) Nakamoto, K. Infrared Spectra of In. organic and Coordination Compounds; 2nd ed.: Wiley; New York, 1970.
12. Moore, J. W.; Pearson, R. G. Kinetics and Mechanism; 3r ed.; Wiley: New York, 1981.
13. (a) Che, C. M.; Wong, K. Y.; Mak, T. C. W. J. Chem. Soc., Chem. Commun. 1985, 546. (b) Marmion, M. E.; Takeuchi, K. J. J. Am. Chem. Soc. 1986, 108, 510. (c) Lau, T. C.; Kochi, J. K. J. Chem. Soc., Chem. Commun. 1987, 179.
14. Latimer, W. M. Oxidation Potentials; 2nd ed.: Prentice Hall, Inc.; Englewood Cliffs, N. J. 1952.
15. Barral, R.; Bocard, C.; Seree de Roch, I.; Sajas, L. Tetrahedrom Lett. 1972, 1693.
16. Given, K. W.; Mattson, B. M.; Pignolet, L. H. Inorg. Chem. 1976, 15, 3152. (b) Mattson, B. M.; Pignolet, L. H. Inorg. Chem. 1977, 16, 488.
17. Meyer, T. J.; Salmon, D. J.; Sullivan, B. P. Inorg. Chem. 1978, 17, 3334.
18. Dobson, J. C.; Helms, J. H.; Doppelt, P.; Sullivan, B. P.; Hatfield, W. E.; Meyer, T. J. Inorg. Chem. 1989, 28, 2200.
19. Cundari, T. R.; Drago, R. S. Inorg. Chem. 1990, 29, 487.
20. Bernbard, P.; Burgi, H.; Hauser, J.; Lehman, H.; Ludi, A. Inorg. Chem. 1982, 21, 3936.
21. Aoyagi, K.; Nagao, H.; Yukawa, Y.; Ogura, M.; Kuwayama, A.; Howell, S.; M. Mukaida, Kakihana, H. Chem. Lett. 1986, 2136.
22. Aoyagi, K.; Yukawa, Y.; Shimizu, K.; Mukaida, M.; Takeuchi, T.; Kakihana, H. Bull. Chem. Soc. Jpn. 1986, 59, 1493.
23. Gorestein, D. G. Ed. ${ }^{31 P}$ NMR, Principles and Applications; Academic Press: N. Y., 1984.

