DOI QR코드

DOI QR Code

Nanocrystalline Antimony Oxide Films for Dye-Sensitized Solar Cell Applications

  • Kim, Ji-Hye (Department of Chemistry, Division of Energy Systems Research, Ajou University) ;
  • Jang, Ji-Yeon (Department of Chemistry, Division of Energy Systems Research, Ajou University) ;
  • Kim, Sung-Chul (Department of Chemistry, Division of Energy Systems Research, Ajou University) ;
  • Han, Chi-Hwan (Korea Institute of Energy Research) ;
  • Kim, Seung-Joo (Department of Chemistry, Division of Energy Systems Research, Ajou University)
  • Received : 2011.10.28
  • Accepted : 2012.01.04
  • Published : 2012.04.20

Abstract

A new photoelectrode composed of $Sb_6O_{13}$ nanoparticles with the size of 20-30 nm has been prepared via thermolysis of a colloidal antimony pentoxide tetrahydrate ($Sb_2O_5{\cdot}4H_2O$) suspension. The $Sb_6O_{13}$ electrode showed good semiconducting properties applicable to dye-sensitized solar cells (DSSCs); the energy band gap was estimated to be $3.05{\pm}0.5$ eV and the position of conduction band edge was close to those of $TiO_2$ and ZnO. The DSSC assembled with the $Sb_6O_{13}$ photoelectrode and a conventional ruthenium-dye (N719) exhibited the overall photo-current conversion efficiency of 0.74% ($V_{oc}$ = 0.76 V, $J_{sc}=1.99\;mAcm{-2}$, fill factor = 0.49) under AM 1.5, $100\;mWcm^{-2}$ illumination.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
  3. Thavasi, V.; Renugopalakrishnan, V.; Jose, R.; Ramakrishna, S. Mater. Sci. Eng. R 2009, 63, 81. https://doi.org/10.1016/j.mser.2008.09.001
  4. Park, N.-G.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 8989. https://doi.org/10.1021/jp994365l
  5. Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N.- G.; Kim, K.; Lee, W. I. Adv. Mater. 2009, 21, 3668. https://doi.org/10.1002/adma.200900294
  6. Keis, K.; Lindgren, J.; Lindquist, S. E.; Hagfeldt, A. Langmuir 2000, 16, 4688. https://doi.org/10.1021/la9912702
  7. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 5585. https://doi.org/10.1021/jp004121x
  8. Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S. E.; Hagfeldt, A. Sol. Energy. Mater. Sol. Cells 2002, 73, 51. https://doi.org/10.1016/S0927-0248(01)00110-6
  9. Shin, Y.-J.; Kim, K. S.; Park, N.-G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2005, 26(12), 1929. https://doi.org/10.5012/bkcs.2005.26.12.1929
  10. Bedja, I.; Hotchandani, S.; Kamat, P. V. J. Phys. Chem. 1994, 98, 4133. https://doi.org/10.1021/j100066a037
  11. Chappel, S.; Zaban, A. Sol. Energy. Mater. Sol. Cells 2002, 71, 141. https://doi.org/10.1016/S0927-0248(01)00050-2
  12. Bjoerksten, U.; Moser, U.; Grätzel, M. Chem. Mater. 1994, 6, 858. https://doi.org/10.1021/cm00042a026
  13. Lenzmann, F.; Krueger, J.; Burnside, S.; Brooks, K.; Grätzel, M.; Gal, D.; Ruhle, S.; Cahen, D. J. Phys. Chem. B 2001, 105, 6347. https://doi.org/10.1021/jp010380q
  14. Sayama, K.; Sugihara, H.; Arakawa, H. Chem. Mater. 1998, 10, 3825. https://doi.org/10.1021/cm980111l
  15. Mane, R. S.; Pathan, H. M.; Lokhande, C. D.; Han, S.-H. Solar. Energy 2006, 80, 185. https://doi.org/10.1016/j.solener.2005.08.013
  16. Tan, B.; Toman, E.; Li, Y.; Wu, Y. J. Am. Chem. Soc. 2007, 129, 4162. https://doi.org/10.1021/ja070804f
  17. Golunski, S. E.; Jackson, D. Appl. Catal. 1989, 48, 123. https://doi.org/10.1016/S0166-9834(00)80270-5
  18. Klestchov, D.; Burmistrov, V.; Sheinkman, A.; Pletnev, R. J. Solid. State. Chem. 1991, 94, 220. https://doi.org/10.1016/0022-4596(91)90186-L
  19. Zhao, J.; Wang, X.; Liu, C.; Xu, X.; Li, Y. Powder. Tech. 2008, 183, 220. https://doi.org/10.1016/j.powtec.2007.07.044
  20. Kim, S.-S.; Yum, H.-H.; Sung, Y.-E. Sol. Energy. Mater. Sol. Cells 2003, 79, 495. https://doi.org/10.1016/S0927-0248(03)00065-5
  21. Kubelka, P.; Munk, F. Z. Tech. Phys. 1931, 12, 593.
  22. Subramanian, M. A.; Aravamudan, G.; Subbaa Rao, G. V. Prog. Solid. State. Chem. 1983, 15, 55. https://doi.org/10.1016/0079-6786(83)90001-8
  23. Barton, D. G.; Shtein, M.; Wilson, R. D.; Soled, S. L.; Iglesia, E. J. Phys. Chem. B 1999, 103, 630. https://doi.org/10.1021/jp983555d
  24. Tauc, J. Mater. Res. Bull. 1970, 5, 721. https://doi.org/10.1016/0025-5408(70)90112-1
  25. Karunakaran, C.; Anilkumar, P.; Manikandan, G.; Gomathisankar, P. Sol. Energy. Mater. Sol. Cells 2010, 94, 900. https://doi.org/10.1016/j.solmat.2010.01.015
  26. Mizoguchi, H.; Eng, H. W.; Woodward, P. M. Inorg. Chem. 2004, 43, 1667. https://doi.org/10.1021/ic034551c

Cited by

  1. -Based Electrodes for Dye-Sensitized Solar Cells vol.51, pp.10S, 2013, https://doi.org/10.7567/JJAP.51.10NE23
  2. Investigation of the cation valency and conductivity of antimony-substituted ceria vol.20, pp.8, 2016, https://doi.org/10.1007/s10008-016-3242-3
  3. An efficient room-temperature liquefied petroleum gas sensor based on trirutile copper antimonate nano-polygons vol.44, pp.28, 2012, https://doi.org/10.1039/d0nj02528c