• Title/Summary/Keyword: rotational angle differences

Search Result 25, Processing Time 0.03 seconds

A Comparative Analysis of Two Inflatable Kayak's Effect on Players and Kayak Performances (두 종류 공기주입식 카약 보트의 성능 비교 및 선수 수행력 비교 분석)

  • Lee, Chong-Hoon;Park, Yong-Hyun;Nam, Ki-Jeong
    • 한국체육학회지인문사회과학편
    • /
    • v.53 no.2
    • /
    • pp.531-540
    • /
    • 2014
  • The purpose of this study was to investigate the differences between two inflatable kayak by recording performance related variables during the kayak forward stroke motion. A total of 5 elite high school kayak players were recruited to participate while their kinematics and muscle activations were recorded while performing inside their high school swimming pool. Boat velocity, boats swaying angle, the average angular velocity and were used to evaluate the boats performance. The player's trunk rotational range of motion, knee flexion-extension angle range of motion, maximum trunk rotation angle, the knee flexion-extension angular velocity, and the upper and lower limb muscle activations were calculated and analyzed for the player's efficiency evaluation. There were no significantly different variables for the player's kinematics and their muscle activations for the two conditions. The B kayak was significantly faster than the A kaya. In addition there were no significant differences between the remaining variables for the two kayaks. In conclusion, the B kayak was faster than the A kayak, but neither of the kayaks had an influence on the player's performance variables.

Effects of Occlusal Condition and Clenching Force on the Mandibular Torque Rotational Movement (교합조건 및 이악물기 힘의 변화가 하악의 비틀림 회전운동에 미치는 영향)

  • Oh, Min-Jung;Han, Kyung-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.411-426
    • /
    • 2005
  • The purpose of this study was to investigate the effects of occlusal condition and clenching level on the mandibular torque rotational movement. For this study, healthy 14 men without any symptoms and signs of temporomandibular disorders were selected. Mandibular torque rotational movement was observed in each circumstance of combination of three occlusal conditions such as natural dentition, with wafer of 3.6 mm thickness, and wafer with resin stop of 14 mm thickness total during hard biting of bite stick at maximum voluntary contraction(MVC) and 50% of MVC level of surface EMG activity of masseter muscle. Electromyographic activity and mandibular torque rotational movement were observed using BioEMG and BioEGN in $BioPak^{(R)}$ system. Each biting movement in each circumstance was composed of clenching one time and hard biting of wooden stick two times. The observed items were opening distance, velocity and amount of torque rotational movement in mandibular movement, and the data were statistically processed with $SPSS^{(R)}$ windows (ver.10.0). The results of this study were as follows: 1. There were no differences in the mandibular movement distance between those value in both biting sides, and between those in both clenching forces, but the mandibular velocity showed a different results by clenching force. For the amount of torque rotational movement, there were no difference in the value of the frontal plane but some significant difference was in the value of the horizontal plane by biting side. 2. The mandibular movement distance and the mandibular velocity in both planes were higher by maximum voluntary contraction than those by half maximum voluntary contraction, and amount of torque rotational movement in the horizontal plane was also increased by maximum voluntary contraction. 3. The opening distance in both planes were decreased with the increase of vertical dimension of occlusion, namely, by the occlusal appliances, and this pattern was also showed in the mandibular velocity in case of hard biting by maximum voluntary contraction. However, the amount of torque rotational movement were not different by the increase of vertical dimension of occlusion. 4. The value of angle and distance of the torque rotational movement in the hard biting of wooden stick were generally higher than those in the clenching without wooden stick in both planes without regard to occlusal conditions and/or clenching forces.

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System (지열에너지 시스템을 적용한 발전용 수차의 유동과 전력 특성)

  • Seo, Choong-Kil;Won, Joung-Wun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • Geothermal energy is used in various types, such as power generation, direct use, and geothermal heat pumps. Geothermal energy with high temperature have been used for power generation for more than a century. The purpose of the study is to investigate flow and electricity power characteristics of hydraulic turbine for power generation of geothermal heat pump type with closed-system. The differences between the four types of hydraulic turbine, are different from the blade shape, volume, angle and etc. In case of prototype(1), pressure at blade was reduced to 2.1 bar, the kinetic energy of blade increased by increasing flow velocity(4.1 m/s). The increase of flow velocity at the blade edge markedly appeared, to increase the kinetic energy of the rotating shaft. In case that gateway in hydraulic turbine was installed, operating torque and RPM(1,080) of the rotating shaft increased respectively. Although rotational speed of prototype(2) compared to prototype(1) was reduced, the power generation capacity was greater about 3.4 times to 97 W. The most power of 255W was generated from prototype (4).

Effects of Bat Type on the Swing Motion of High School Baseball Athletes

  • Choi, Min Ra;Song, Sung Woo;Cha, Myung Joo;Shin, Min Young;Lee, Ki Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.87-92
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the factors affecting two kinds of bat swing behavior through kinematic analysis. Method: A total of 32 high school baseball players participated in this study. The ball was placed on the tee-ball in a position where the subject could easily swing and the standard bat swing was performed as quickly and as accurately as possible using aluminum bats and wooden bats. Results: The aluminum bat showed a rapid swing speed of about 1.79 m/sec compared to the wooden bat. The speed of the batted ball was found to be significantly greater for the aluminum bat than for the wooden bat. In addition, although the difference between the shoulder-pelvis rotation angle according to the type of bat was not indicated, there was a statistically significant difference between the aluminum bat and the wooden bat in terms of the rotational angular velocity. Conclusion: Even though the results can explain the difference between the bat swing speed and the speed of the batted ball depending on the bat's material, it is difficult to explain the difference depending on the type of bat at the shoulder-pelvis rotation angle. However, shoulder-pelvic rotation angular velocity appears to be higher for the aluminum bat, and the differences in the type of bat is considered to be related to the batting swing factor.

An Evaluation of Initial Stability after Maxillary Posterior Impaction (상악의 후상방 회전이동을 시행한 환자에서의 초기 안정성 평가)

  • Ahn, Sang-Wook;Kwon, Taek-Kyun;Lee, Sung-Tak;Song, Jae-Min;Kim, Tae-Hoon;Hwang, Dae-Seok;Shin, Sang-Hoon;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • Purpose: This study was designed to retrospectively evaluate the postsurgical initial stability of the Le Fort I osteotomy with posterior impaction and rigid internal fixation for the correction of mandibular prognathism with midface deficiency. Particular attention was paid to the magnitude and direction of the initial postsurgical change. Methods: 20 healthy patients with mandibular prognathism and midface deficiency participated in this study. All patients underwent Le Fort I osteotomy with posterior impaction and mandibular setback BSSO by one surgeon. Preoperative (T0), immediate postoperative (T1) and follow-up period (T2) cephalograms were taken and analyzed. Change between T0~T1 and T1~T2 was measured and analyzed. Results: Between T0~T1, significant differences were observed in all measurements except the ANS point and mandibular plane angle. Between T1~T2, only the occlusal plane angle was significantly changed. No significant changes were found in all other measurements. Conclusion: This study indicates that Le Fort I osteotomy with posterior impaction is stable at initial stages. Although changes in the occlusal plane angle were observed, it was caused by tooth movement after post-operative orthodontic treatment. However, more studies with larger samples are required to form definitive conclusions. Conclusion: This study indicates that Le Fort I osteotomy with posterior impaction is stable at initial stages. Although changes in the occlusal plane angle were observed, it was caused by tooth movement after post-operative orthodontic treatment. However, more studies with larger samples are required to form definitive conclusions.

Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device (선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인)

  • Lee, Ji-Woong;Jung, Gyun-Sik;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • Different methods are used for determining the output of engines to obtain the indicated horsepower by measuring the combustion pressure of cylinders, and to obtain the shaft horsepower by measuring the shaft torque. It is difficult to examine the shaft torque using the condition of the cylinder, and the most accurate method used for determining the combustion pressure involves examining the combustion state of the cylinder to evaluate the engine performance and analyze the combustion of the cylinder. During the measurement, the combustion pressure is the most important parameter used for accurately determining the cylinder angle because the cylinder pressure is indicated based on the angle of the crankshaft. In this study, an encoder was used as the crank angle sensor to measure the cylinder pressure on the generator engine of the actual operating ship. The reasons for the differences between the top dead center (TDC) recognized by the encoder (TDCencoder) and the TDC recognized by the compression pressure (TDCcomp) were considered. The dif erences between the TDCcomp and TDCencoder of the cylinders measured at idle running, 25 %, 50 %, and 60 % loads were analyzed to determine for the crankshaft production effect, the crankshaft torsion effect owing to the increased rotational resistance from the increased load, and the coupling damping effect between the engine and generator. It was confirmed that the TDC error occurred up to 3° crank angle as the load of the generator increased.

STRESS DISTRIBUTION OF THREE NITI ROTARY FILES UNDER BENDING AND TORSIONAL CONDITIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS (세가지 니켈 티타늄 파일의 휨과 비틀림 조건에서의 응력 분포에 관한 3차원 유한요소 연구)

  • Kim, Tae-Oh;Lee, Chan-Joo;Kim, Byung-Min;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.323-331
    • /
    • 2008
  • Flexibility and fracture properties determine the performance of NiTi rotary instruments. The purpose of this study was to evaluate how geometrical differences between three NiTi instruments affect the deformation and stress distributions under bending and torsional conditions using finite element analysis. Three NiTi files (ProFile .06 / #30, F3 of ProTaper and ProTaper Universal) were scanned using a Micro-CT. The obtained structural geometries were meshed with linear, eight-noded hexahedral elements. The mechanical behavior (deformation and von Mises equivalent stress) of the three endodontic instruments were analyzed under four bending and rotational conditions using ABAQUS finite element analysis software. The nonlinear mechanical behavior of the NiTi was taken into account. The U-shaped cross sectional geometry of ProFile showed the highest flexibility of the three file models. The ProTaper, which has a convex triangular cross-section, was the most stiff file model. For the same deflection, the ProTaper required more force to reach the same deflection as the other models, and needed more torque than other models for the same amount of rotation. The highest von Mises stress value was found at the groove area in the cross-section of the ProTaper Universal. Under torsion, all files showed highest stresses at their groove area. The ProFile showed highest von Mises stress value under the same torsional moment while the ProTaper Universal showed the highest value under same rotational angle.

Reliability Analysis of Monopile for a Offshore Wind Turbine Using Response Surface Method (응답면 기법을 이용한 해상풍력용 모노파일의 신뢰성 해석)

  • Yoon, Gil Lim;Kim, Kwang Jin;Kim, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2401-2409
    • /
    • 2013
  • Reliability analysis with response surface method (RSM) was peformed for a offshore wind turbine (OWT) monopile, which is one of mostly used foundations under 25m seawater depth in the world. The behaviors of a real OWT monopile installed into sandy soils subjected to offshore environmental loads such as wind and wave were analysed using reliability design program (HSRBD) developed in KIOST. Sensitivity analysis of design variables for a OWT monopile with 6m diameter showed that the larger in pile diameter the smaller in probability of failure ($P_f$) of a horizontal deflection and a rotational angle at a pile top, but at a greater than 7m of pile diameter, the reduction rate of $P_f$ was almost constant. It is a necessary that appropriate local design criteria should be designated as soon as possible because there were significant differences on horizontal deflections; $P_f$ was 60% at a minimum criteria 15mm deflection, however, 1.5% $P_f$ when 60mm deflection using 1% of pile diameter from local design criterion standard. Finally, friction angle of sand among many design variables was found most influential design factor in OWT monopile design, and a sensitivity analysis is found an important process to understand which design variables can mostly reduce $P_f$ with a optimum design for maintaining OWT stability.

Stability Analysis of Nonhomogeneous Slopes by Log -spiral Failure Surface (이질토층사면의 대수누선파양에 대한 안정해석)

  • Kim, Yeong-Su;Seo, In-Seok;Baek, Yeong-Sik
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.41-54
    • /
    • 1993
  • This paper presents the two and three -dimensional stability analysis of nonhom- ogeneous, c-o soil slopes. Potential failure surface is assumed as a logspiral curve refracted in boundaries of layers. In 3-D analysis, rotational soil mass is assumed with a cylindroid central part terminated with plane ends. Seismic force is considered by sesmic intensity. The program developed in this study is compared with the program PCSTABLS. The ratio of three-dimensional minimum factor of safety to two-dimensional case is examined and factor of safety changes are showed for the ratio of cylindroid length to slope height and numbers of slice. On such bases the following conclusions may by made : (1) The program developed in this program is less conservative than the program PCSTABLS. (2) The value of F2 of this study shows the larger differences than that of PCSTABLS with increasing friction angle (3) Factors of safety computed for 3-D geometry differ considerablely from ordinary 2-D factors of safety. Since Fb/F2 exceeds unity, three -dimensional effects tend to increase the factor of safety. (4) As the ratio of three - dimensional failure width of slope height, b/H increase, the value of Fb/Ff decreases and approaches 1.0 when bye is 14. (5) In calculating the factor of safety using the developed program the number of slices is suitable with the ranges of 30-40

  • PDF