DOI QR코드

DOI QR Code

Reliability Analysis of Monopile for a Offshore Wind Turbine Using Response Surface Method

응답면 기법을 이용한 해상풍력용 모노파일의 신뢰성 해석

  • 윤길림 (한국해양과학기술원 연안개발.에너지연구부) ;
  • 김광진 (컴택리서치) ;
  • 김홍연 (삼부토건(주) 기술연구실)
  • Received : 2013.04.08
  • Accepted : 2013.08.13
  • Published : 2013.11.30

Abstract

Reliability analysis with response surface method (RSM) was peformed for a offshore wind turbine (OWT) monopile, which is one of mostly used foundations under 25m seawater depth in the world. The behaviors of a real OWT monopile installed into sandy soils subjected to offshore environmental loads such as wind and wave were analysed using reliability design program (HSRBD) developed in KIOST. Sensitivity analysis of design variables for a OWT monopile with 6m diameter showed that the larger in pile diameter the smaller in probability of failure ($P_f$) of a horizontal deflection and a rotational angle at a pile top, but at a greater than 7m of pile diameter, the reduction rate of $P_f$ was almost constant. It is a necessary that appropriate local design criteria should be designated as soon as possible because there were significant differences on horizontal deflections; $P_f$ was 60% at a minimum criteria 15mm deflection, however, 1.5% $P_f$ when 60mm deflection using 1% of pile diameter from local design criterion standard. Finally, friction angle of sand among many design variables was found most influential design factor in OWT monopile design, and a sensitivity analysis is found an important process to understand which design variables can mostly reduce $P_f$ with a optimum design for maintaining OWT stability.

응답면 기법(RSM)을 이용하여 해상풍력(OWT) 모노파일에 대한 신뢰성 해석을 수행하였다. 모노파일은 해수면으로부터 15m 깊이에 설치되고 사질토에 근입되는 조건으로 고려하였다. 풍하중 및 파랑하중과 같은 해양환경하중이 작용하는 OWT 모노파일에 대한 신뢰성 해석은 KIOST에서 개발된 신뢰성 해석프로그램인 HSRBD를 이용하였다. OWT 모노파일(직경 6m)의 설계변수에 대한 민감도 분석을 수행한 결과 파일직경이 증가할수록 파일두부에서의 수평변위 및 회전각에 대한 파괴확률은 감소하나 직경이 7m 이상이 되는 경우 파괴확률의 감소율은 작아져 거의 일정해지는 것으로 나타났다. 한편, 국내기준 가운데 파일직경의 1%를 허용수평변위(60mm)로 적용하는 경우 파일의 파괴확률은 1.5%이나 최소기준인 15mm로 고려하는 경우 파괴확률은 60%로 큰 차이가 발생하므로 이에 대한 적절한 설계기준의 정립이 요구된다. 마지막으로 OWT 모노파일의 다양한 설계변수 가운데 기초지반(사질토)에 대한 내부마찰각의 불확실성이 큰 경우 이것이 파일거동에 가장 큰 영향을 미치는 것으로 분석되었으며, 민감도 분석결과는 최적설계와 파괴확률 감소를 위해 어떠한 절차가 필요한지를 보여준다.

Keywords

References

  1. API (2005). Recommended practice for planning, design and constructing fixed offshore platforms-working stress design, American Petroleum Institute Publishing Service, Washington D.C., pp. 1-263.
  2. Bucher, C. G. and Bourgund, U. (1987). Efficient use of response surface method, Report No. 9-87, Institute fur Mechanik, University of Innsbruck, Innsbruck, Austria.
  3. Bush, E. and Manuel, L. (2009). "Foundation models for offshore wind turbines." 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, pp. 1-7.
  4. Dewaikar, D. and Patil, P. (2006). "A new hyperbolic p-y curve model for laterally loaded piles in soft clay." Foundation Analysis and Design, pp. 152-158.
  5. DNV (2007). Design of offshore wind turbine structures, Offshore Standard DNV-OS-J101, Det Norske Veritas, Hovik, Norway, p. 153.
  6. Emmanuel, F. and Guillaume, C. (2008). "Reservoir flow uncertainty assessment using response surface constrained by secondary information." Journal of Petroleum Science and Engineering, Vol. 60, pp. 170-182. https://doi.org/10.1016/j.petrol.2007.06.003
  7. Faravelli, L. (1989). "Response surface approach for reliability analysis." Journal of Engineering Mechanics, ASCE, Vol. 115, No. 12, pp. 2763-2781. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:12(2763)
  8. Jonkman, J., Butterfield, S., Larsen, T. J., Passon, P., Camp, T., Nichols, J., Azcona, J. and Martinez, A. (2007). "Offshore code comparison collaboration within IEA wind annex XXIII: PhaseII results regarding monopile foundation modeling." 2007 European Offshore Wind Conference & Exhibition, Berlin, Germany, pp. 1-12.
  9. Khuri, A. I. and Cornell, J. A. (1996). Response surfaces designs and analyses, second edition, Marcel Dekker.
  10. KIOST (2013). HSRBD ver.3.1 harbour structure reliability based design (in Korean).
  11. Krolis, V. (2007). "Foundation design of monopile support structures." 2007 European Offshore Wind Energy Conference, Nice, France, pp. 1-46.
  12. Kuo, Y. S., Achmus, M. and Kao, C. S. (2008). "Practical design considerations of monopile foundations with respect to scour." Global Wind Power, Beijing, pp. 29-31.
  13. Nicholas, Z. (2010). Importance sampling (lecture note), Cornell University. pp. 13-14.
  14. Yoon, G., Yoon, Y., Kim, H. and Kim, B. (2010). "Partial safety factors for geotechnical bearing capacity of port structures." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 22, No. 3, pp. 156-162 (in Korean).

Cited by

  1. Dynamic reliability analysis of offshore wind turbine support structure under earthquake vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.609
  2. Seismic Reliability Analysis of Offshore Wind Turbine Jacket Structure Using Stress Limit State vol.30, pp.4, 2016, https://doi.org/10.5574/KSOE.2016.30.4.260
  3. Seismic Reliability Analysis of Offshore Wind Turbine Support Structure vol.29, pp.5, 2015, https://doi.org/10.5574/KSOE.2015.29.5.342