• 제목/요약/키워드: rotating cylinders

검색결과 53건 처리시간 0.021초

Experimental investigation of the whirl and generated forces of rotating cylinders in still water and in flow

  • Chen, Wei;Rheem, Chang-Kyu;Lin, Yongshui;Li, Ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.531-540
    • /
    • 2020
  • The whirl and generated forces of rotating cylinders with different diameters placed in still water and in flow are studied experimentally. For the rotating cylinders in still water, the Same Frequency Whirl (SFW) and Different Frequency Whirl (DFW) have been identified and illustrated. The corresponding SFW and DFW areas are divided. The Root Mean Square (RMS) values of the generated force coefficient dramatically increase in the defined ranges of Resonance I and Resonance II. For the rotating cylinders in flow, the hydrodynamics, SFW and DFW are illustrated. The hydrodynamic, SFW and DFW areas are divided. The RMS values of the generated forces in the range of Resonance II are much smaller than those in still water due to the generated lift forces. The discussion suggests that the frequency of the DFW may equal multiple times or one-multiple times that of the rotating frequency: the whirl direction of the DFW with multiple times the frequency of the rotating frequency is the same as the rotating direction. The whirl direction of the DFW with one-multiple times frequency of the rotating frequency is opposite to the rotating direction.

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동 토폴로지 변화 (CHANGE OF CHANNEL-FLOW TOPOLOGY BY A STREAMWISE-PERIODIC ARRAY OF ROTATING CIRCULAR CYLINDERS)

  • 정태경;양경수;이경준;강창우
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.17-24
    • /
    • 2013
  • In this study, we consider the characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. An immersed boundary method was employed to facilitate implementing the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to increase of mean friction on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of rotating cylinders to modify flow topology, which might be used to enhance heat transfer on the channel walls.

동심원 환내의 정상.비정상 회전 유동 (Steady and Unsteady Rotating Flows between Concentric Cylinders)

  • 심우건
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

근접하여 회전하는 두 원통 사이의 윤활유동해석 (Analysis for Lubrication between Two Close Rotating Cylinders)

  • 이승재;정호열;정재택
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.391-398
    • /
    • 2001
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is investigated based on Stokes'approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is also determined as the distance between two cylinders varies. Special attention is directed to the case of very small distance between two cylinders concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

근접하여 회전하는 두 원통 사이의 고 점성 윤활 유동 (Two-dimensional High Viscous Flow between Two Close Rotating Cylinders)

  • 이승재;정재택
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.142-149
    • /
    • 2000
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is Investigated based on Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution In the flow field is determined. By Integrating the stress distribution on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is determined as the distance between two cylinders vary. It Is also revealed that the velocity at the far field has finite non-zero value. Special attention is directed to the case of very small distances between two cylinders by way of the lubrication theory.

  • PDF

동시 회전하는 수평 실린더 내 환상공간에서의 혼합대류 (Mixed-Convection in an Annulus Between Co-Rotating Horizontal Cylinders)

  • 이관수;김양현;임광옥
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.622-628
    • /
    • 2002
  • Numerical analysis has been carried out for two-dimensional steady and unsteady mixed convection in the annulus between co-rotating horizontal cylinders with a heated inner cylinder. The ratio of annulus gap($\sigma$) is taken from 1 to 10 and the order of mixed-convection parameter B(=Gr/(1+Re)$^2$) varies from 10$^4$to $10^0$. The flow patterns over this parameter range are steady multicellular, oscillatory multicellular or steady unicellular. The addition of co-rotating of both cylinders stabilizes the flow in the annulus and weakens the unsteadiness. Even in the large values of rotating parameter such as of $10^0$/($\sigma$=2) and 10$^2$($\sigma$=10), the flow pattern becomes asymptotic to the steady unicellular flow, like as in the rigid-body rotating flow.

편심환내의 회전 유동 (Rotating Flows in Eccentric Cylinders)

  • 심우건
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.9-16
    • /
    • 1997
  • A numerical method based on the spectral collocation method is developed for the steady rotating flows in eccentric annulus. Steady flows between rotating cylinders are of interest on lubrication in large rotating machinery. Steady rotating flow is generated by the rotating inner cylinder with constant angular velocity. The governing equations for laminar flow are simplified from Navier-Stokes equations by neglecting the non-linear convection terms. Integrating the pressure round the rotating cylinder based on the half Sommerfeld method, the load on the cylinder is evaluated with eccentricity. The attitude angle and Sommerfeld variable are calculated from the load. It is found that those values are influenced by the eccentricity. The attitude and Sommerfeld reciprocal are decreased with eccentricity. As expected, the effect of the annular gap ratio on them is negligible.

  • PDF

Exact solutions of free vibration of rotating multilayered FGM cylinders

  • Wu, Chih-Ping;Li, Hao-Yuan
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.105-125
    • /
    • 2012
  • A modified Pagano method is developed for the three-dimensional (3D) free vibration analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow cylinders with a constant rotational speed with respect to the meridional direction of the cylinders. The material properties of each FGM layer constituting the cylinders are regarded as heterogeneous through the thickness coordinate, and then specified to obey a power-law distribution of the volume fractions of the constituents, and the effects of centrifugal and Coriolis accelerations, as well as the initial hoop stress due to rotation, are considered. The Pagano method, which was developed for the static and dynamic analyses of multilayered composite plates, is modified in that a displacement-based formulation is replaced by a mixed formulation, the complex-valued solutions of the system equations are transferred to the real-valued solutions, a successive approximation method is adopted to extend its application to FGM cylinders, and a propagator matrix method is developed to reduce the time needed for its implementation. These modifications make the Pagano method feasible for multilayered FGM cylinders, and the computation in the implementation is independent of the total number of the layers, thus becoming less time-consuming than usual.

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동의 열전달 증진 (Heat Transfer Enhancement in Channel Flow by a Streamwise-Periodic Array of Rotating Circular Cylinders)

  • 정태경;양경수
    • 대한기계학회논문집B
    • /
    • 제38권12호
    • /
    • pp.999-1008
    • /
    • 2014
  • 채널 내 회전하는 원형 실린더가 주기적으로 존재하는 경우 회전하는 실린더를 지나는 유동에 의한 채널 내 유동 특성 및 채널 벽에서의 열전달 효율증진을 파악하였다. 본 연구에서 사용된 유동 모델은 마이크로 채널, 열교환기 등에서 평판 사이의 열전달 효율을 높이기 위해 흔히 사용되는 와류 생성기의 가장 단순한 모델이다. 실린더와 채널 벽과의 간격 및 Re 수를 변화해가며 수치적 해석을 수행하였으며, 직교좌표계에서 채널 내 원형 실린더를 구현하기 위해 가상경계법이 적용 되었다. 채널 내 실린더가 회전하고 있는 경우, 실린더가 정지해 있는 경우에 비해 특히 실린더와 채널 벽과의 간격이 작아질수록 채널 벽에서의 열전달 효과는 더 높은 것으로 파악되었다.

편심환내의 비선형 회전 유동 (Nonlinear Rotating Flows in Eccentric Cylinders)

  • 심우건
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.16-28
    • /
    • 2000
  • The steady rotating flows in eccentric annulus has been studied by a numerical method based on the spectral collocation method. The inner cylinder has a constant angular velocity while the outer on e is stationary. Flow between eccentric cylinders is of considerable technical importance as it occurs in journal bearings. In the present work, the governing equations for laminar flow are expressed as Navier-Stokes equations, including the non-linear convection terms. The solutions were utilized i, estimate the effects of the nonlinear terms on the load acting on the rotating cylinder. Based on the half and the full Sommerfeld methods, the load on the rotating cylinder is evaluated with eccentricity, by integrating the pressure and skin friction around the cylinder. The attitude angle and Sommerfeld reciprocal are calculated from the load. Also, the torque on the rotating inner cylinder was calculated. considering the skin friction. The attitude angle and Sommerfeld reciprocal are decreased with eccentricity. Viscous damping coefficient due to the skin friction becomes larger with decreasing the annular space. It is found the non-linear effects of the convection terms on the flow and the load are important. especially on the attitude angle, for relatively wide annular configurations however, the effects on those are minor for very narrow annular ones.