DOI QR코드

DOI QR Code

Heat Transfer Enhancement in Channel Flow by a Streamwise-Periodic Array of Rotating Circular Cylinders

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동의 열전달 증진

  • 정태경 (인하대학교 기계공학부) ;
  • 양경수 (인하대학교 기계공학부)
  • Received : 2014.07.08
  • Accepted : 2014.09.01
  • Published : 2014.12.01

Abstract

In this study, we consider the heat transfer characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

채널 내 회전하는 원형 실린더가 주기적으로 존재하는 경우 회전하는 실린더를 지나는 유동에 의한 채널 내 유동 특성 및 채널 벽에서의 열전달 효율증진을 파악하였다. 본 연구에서 사용된 유동 모델은 마이크로 채널, 열교환기 등에서 평판 사이의 열전달 효율을 높이기 위해 흔히 사용되는 와류 생성기의 가장 단순한 모델이다. 실린더와 채널 벽과의 간격 및 Re 수를 변화해가며 수치적 해석을 수행하였으며, 직교좌표계에서 채널 내 원형 실린더를 구현하기 위해 가상경계법이 적용 되었다. 채널 내 실린더가 회전하고 있는 경우, 실린더가 정지해 있는 경우에 비해 특히 실린더와 채널 벽과의 간격이 작아질수록 채널 벽에서의 열전달 효과는 더 높은 것으로 파악되었다.

Keywords

References

  1. Valencia, A. and Cid, M., 2002, "Turbulent Unsteady Flow and Heat Transfer in Channels with Periodically Mounted Square Bars," Int. J. Heat and Mass Transfer, Vol. 45, No. 8, pp. 1661-1673. https://doi.org/10.1016/S0017-9310(01)00267-8
  2. Buyruk, E., 2002, "Numerical Study of Heat Transfer Characteristics on Tandem Cylinders, Inline and Staggered Tube Banks in Cross-flow of Air," Int. Commun. Heat Mass Transfer, Vol. 29, No. 3, pp. 355-66. https://doi.org/10.1016/S0735-1933(02)00325-1
  3. Zhou, Y. and Yiu, M.W., 2006, "Flow Structure, Momentum and Heat Transport in a Two-tandemcylinder Wake," J. Fluid Mech., Vol. 548, pp. 17-48. https://doi.org/10.1017/S002211200500738X
  4. Han, T. H., Yang, K. S. and Lee, K., 2010, "Heat Transfer Characterization of Two Isothermal Circular Cylinders in Proximity," ASME J. Heat transfer, Vol. 132, No. 3, pp. 034504. https://doi.org/10.1115/1.4000058
  5. Pinol, S. and Grau, F.X., 1998, "Influence of the No-slip Boundary Condition on the Prediction of Drag, Lift, and Heat Transfer Coefficients in the Flow Past a 2-D Cylinder," Numer. Heat Tranfer, Part A, Vol. 34, pp. 313-330. https://doi.org/10.1080/10407789808913989
  6. Yoon, D. H., Yang, K. S. and Kang, C., 2010, "Primary Instability of the Channel Flow with a Streamwise-periodic Array of Circular Cylinders - Effects of the Distance Between the Cylinder and the Channel Wall," J. Comput. Fluids Eng., Vol. 15, No. 3, pp. 54-59.
  7. Jeong, T., Yang, K. S., Lee, K. and Kang, C., 2013, "Heat Transfer Enhancement in Channel Flow by a Streamwise-periodic Array of Circular Cylinders," J. Comput. Fluids Eng., Vol. 18, No. 2, pp. 85-92. https://doi.org/10.6112/kscfe.2013.18.2.085
  8. Hu, G. H., Sun, D.J., Yin, X.Y. and Tong, B.G., 1996, "Hopf Bifurcation in Wakes Behind a Rotating and Translating Circular Cylinder," Phys. Fluids, Vol. 8, No. 7, pp. 1972-1974. https://doi.org/10.1063/1.868976
  9. Xiong, J., Ling, G. and Zhu, K., 2004, "Numerical Estimate of the Stability Curve for the Flow Past a Rotating Cylinder," Phys. Fluids, Vol. 16 No. 7, pp. 2697-2699. https://doi.org/10.1063/1.1730269
  10. Stojkovic, D., Schon, P., Breuer, M. and Durst, F., 2003, "On the New Vortex Shedding Mode Past a Rotating Circular Cylinder," Phys. Fluids, Vol. 15, No. 5, pp. 1257-1260. https://doi.org/10.1063/1.1562940
  11. Yang, J. and Balaras, E., 2006, "An Embedded-Boundary Formulation for Large-eddy Simulation of Turbulent Flows Interacting with Moving Boundaries," J. Comp. Phys., Vol. 215, pp. 12-40. https://doi.org/10.1016/j.jcp.2005.10.035
  12. Kim, J. and Choi, H., 2004, "An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries," KSME Int. J., Vol. 18, pp. 1026-1035.
  13. Pralits, J.O., Giannetti, F. and Brandt, L., 2013, "Three-dimensional Instability of the Flow Around a Rotating Circular Cylinder," J. Fluid Mech., Vol. 730, pp. 5-18. https://doi.org/10.1017/jfm.2013.334
  14. You, J., Choi, H. and Yoo, J.Y., 2000, "A Modified Fractional Step Method of Keeping a Constant Mass Flow Rate in Fully Developed Channel and Pipe Flows." KSME Int. J., Vol. 14, pp. 547-552.
  15. Schatz, M.F., Barkley, D. and Swinney, H., 1995, "Instability in a Spatially Periodic Open Flow," Phys. Fluids, Vol. 7, No. 2, pp. 344-358. https://doi.org/10.1063/1.868632
  16. Schumm, M., Berger, E. and Monkewitz, P.A., 1994, "Self-excited Oscillations in the Wake of Two-dimensional Bluff Bodies and their Control," J. Fluid Mech., Vol. 271, pp. 17-53. https://doi.org/10.1017/S0022112094001679
  17. Stuart, J.T., 1971, "Nonlinear Stability Theory," Ann. Rev. Fluid Mech., Vol. 3, pp. 347-370. https://doi.org/10.1146/annurev.fl.03.010171.002023
  18. Park, D.S., 1994, "Theoretical Analysis of Feed Back Control of Karman Vortex Shedding at Slightly Supercritical Reynolds Numbers," Eur. J. Mech. B/Fluids, Vol. 13, pp. 387-399.
  19. Sohankar, A., Norberg, C. and Davidson, L., 1998, "Low-Reynolds Number Flow around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition," Int. J. Numer. Meth. Fluids, Vol. 26, pp. 39-56. https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P