• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.026 seconds

Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors

  • Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;Kim, Ki-Deog;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.420-428
    • /
    • 2016
  • For more than 50 years, satellite images have been used to monitor crop growth. Currently, unmanned aerial vehicle (UAV) imagery is being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of growth estimating equation for highland Kimchi cabbage using UAV derived normalized difference vegetation index (NDVI) and agro-meteorological factors. Anbandeok area in Gangneung, Gangwon-do, Korea is one of main districts producing highland Kimchi cabbage. UAV imagery was taken in the Anbandeok ten times from early June to early September. Meanwhile, three plant growth parameters, plant height (P.H.), leaf length (L.L.) and outer leaf number (L.N.), were measured for about 40 plants (ten plants per plot) for each ground survey. Six agro-meteorological factors include average temperature; maximum temperature; minimum temperature; accumulated temperature; rainfall and irradiation during growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 93% of the P.H. and L.L. with a root mean square error (RMSE) of 2.22, 1.90 cm. And $NDVI_{UAV}$ and accumulated temperature in the model explain 86% of the L.N. with a RMSE of 4.29. These lead to the result that the characteristics of variations in highland Kimchi cabbage growth according to $NDVI_{UAV}$ and other agro-meteorological factors were well reflected in the model.

A study on Data Preprocessing for Developing Remaining Useful Life Predictions based on Stochastic Degradation Models Using Air Craft Engine Data (항공엔진 열화데이터 기반 잔여수명 예측력 향상을 위한 데이터 전처리 방법 연구)

  • Yoon, Yeon Ah;Jung, Jin Hyeong;Lim, Jun Hyoung;Chang, Tai-Woo;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.48-55
    • /
    • 2020
  • Recently, a study of prognosis and health management (PHM) was conducted to diagnose failure and predict the life of air craft engine parts using sensor data. PHM is a framework that provides individualized solutions for managing system health. This study predicted the remaining useful life (RUL) of aeroengine using degradation data collected by sensors provided by the IEEE 2008 PHM Conference Challenge. There are 218 engine sensor data that has initial wear and production deviations. It was difficult to determine the characteristics of the engine parts since the system and domain-specific information was not provided. Each engine has a different cycle, making it difficult to use time series models. Therefore, this analysis was performed using machine learning algorithms rather than statistical time series models. The machine learning algorithms used were a random forest, gradient boost tree analysis and XG boost. A sliding window was applied to develop RUL predictions. We compared model performance before and after applying the sliding window, and proposed a data preprocessing method to develop RUL predictions. The model was evaluated by R-square scores and root mean squares error (RMSE). It was shown that the XG boost model of the random split method using the sliding window preprocessing approach has the best predictive performance.

Sample Design in Korea Housing Survey (주거 실태 및 수요조사 표본설계)

  • Byun, Jong-Seok;Choi, Jae-Hyuk
    • Survey Research
    • /
    • v.11 no.1
    • /
    • pp.123-144
    • /
    • 2010
  • In new sample design for Korea Housing Survey to research about housing policy, total strata are forty five because individual results of sixteen regions are estimated. The sample size is determined by sample errors of several variables which are the living area, family income, householder income, and living expenses. The sample size of each region is determined by relative standard error of existing result, and the strata sample size is to use the square root proportion allocation. Enumeration districts are sampled by the probability proportion to size systematic sampling in proportion to the enumeration district size, and the systemic sampling to use assortment characteristics. We considered a new apartment complex because of variation reflections which are rebuilder and redevelopment of houses. To get estimators of mean and variance, we used the design weighting, non-response adjusting, and post-stratification. In order to consider estimation efficiency, we calculate the design effect using estimators of variance.

  • PDF

Evaluation of UM-LDAPS Prediction Model for Solar Irradiance by using Ground Observation at Fine Temporal Resolution (고해상도 일사량 관측 자료를 이용한 UM-LDAPS 예보 모형 성능평가)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Kim, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.13-22
    • /
    • 2020
  • Day ahead forecast is necessary for the electricity market to stabilize the electricity penetration. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for longer than 12 hours forecast horizon. Korea Meteorological Administration operates the UM-LDAPS model to produce the 36 hours forecast of hourly total irradiance 4 times a day. This study interpolates the hourly total irradiance into 15 minute instantaneous irradiance and then compare them with observed solar irradiance at four ground stations at 1 minute resolution. Numerical weather prediction model employed here was produced at 00 UTC or 18 UTC from January to December, 2018. To compare the statistical model for the forecast horizon less than 3 hours, smart persistent model is used as a reference model. Relative root mean square error of 15 minute instantaneous irradiance are averaged over all ground stations as being 18.4% and 19.6% initialized at 18 and 00 UTC, respectively. Numerical weather prediction is better than smart persistent model at 1 hour after simulation began.

Comparison of Real-Time Ionospheric Delay Correction Models for Single-Frequency GNSS Receivers : Klobuchar Model and NeQuick Model (단일주파수 GNSS 수신기용 실시간 전리층 지연 보정 모델 비교 : Klobuchar 모델과 NeQuick 모델)

  • Lee, Chang-Moon;Park, Kwan-Dong;Lee, Sang-Uk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.413-420
    • /
    • 2010
  • The ionospheric delay is currently one of the most significant error sources in precise GNSS surveys. The users of single-frequency receivers should apply some kind of ionospheric correction algorithms to remove or model the ionospheric delay. For real-time correction of the ionospheric delay, one can use Klobuchar or NeQuick model provided by navigation messages of GPS and Galileo, respectively. We evaluated the performance of those models by comparing their effectiveness at different seasons and latitudes. For the first test, we computed the vertical total electron content (VTEC) at the permanent GPS site SUWN for four different seasons. As the second test, we picked three sites in Korea (CHLW, SUWN, JEJU) with high, medium, and low latitudes and evaluated the dependency of VTEC on the site latitude. Computed VTEC values were compared with those from the IRI model and Global Ionosphere Maps (GIM). The root-mean-square (RMS) differences of Klobuchar and NeQuick with respect to IRI and GIM were analyzed. As a result, without regard to season and latitude, the RMS differences of NeQuick models were smaller than that of Klobuchar by about 0.01~3.50 TECU.

A Study on the Data Compression of the Voice Signal using Multi Wavelet (다중 웨이브렛을 이용한 음성신호 데이터 압축에 관한 연구)

  • Kim, Tae-Hyung;Park, Jae-Woo;Yoon, Dong-Han;Noh, Seok-Ho;Cho, Ig-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.625-629
    • /
    • 2005
  • According to the rapid development of the information and communication technology, the demand on the efficient compression technology for the multimedia data is increased magnificently. In this Paper, we designed new compression algorithm structure using wavelet base for the compression of ECG signal and audible signal data. We examined the efficiency of the compression between 2-band structure and wavelet packet structure, and investigated the efficiency and reconstruction error by wavelet base function using Daubechies wavelet coefficient and Coiflet coefficient for each structure. Finally, data were compressed further more using Huffman code, and resultant Compression Rate(CR) and Percent Root Mean Square difference(PRD) were compared with those of existent DCT.

  • PDF

Sensitivity Analysis of Global Wind-Wave Model (전지구 파랑 예측시스템의 민감도 분석)

  • Park, Jong Suk;Kang, KiRyong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.333-342
    • /
    • 2012
  • We studied the characteristics of spatial distribution of global wave height and carried out the modelsensitivity test by changing the input field, model resolution and physical factor (effective wind factor) since the spatial and temporal resolution in wind wave forecasting is one of most important factors. Comparisons among the different cases, and also between model, buoy and satellite data have been made. As a results of the wind-wave model run using the high resolution wind field, the bias of significant wave height showed the positive tendency and the Root-Mean Square Error(RMSE) was a bit decreased based on the comparison with buoy data. When the model resolution was changed to higher, the bias and RMSE was increased, and as the effective wind factor was smaller than default value(= 1.4) the bias and RMSE showed also decreasing pattern.

Uncertainty of Simulated Paddy Rice Yield using LARS-WG Derived Climate Data in the Geumho River Basin, Korea (LARS-WG 기후자료를 이용한 금호강 유역 모의발생 벼 생산량의 불확실성)

  • Nkomozepi, Temba D.;Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • This study investigates the trends and uncertainty of the impacts of climate change on paddy rice production in the Geumho river basin. The Long Ashton Research Station stochastic Weather Generator (LARS-WG) was used to derive future climate data for the Geumho river basin from 15 General Circulation models (GCMs) for 3 Special Report on Emissions Scenarios (SRES) (A2, A1B and B1) included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. The Food and Agricultural Organization (FAO) AquaCrop, a water-driven crop model, was statistically calibrated for the 1982 to 2010 climate. The index of agreement (IoA), prediction efficiency ($R^2$), percent bias (PBIAS), root mean square error (RMSE) and a visual technique were used to evaluate the adjusted AquaCrop simulated yield values. The adjusted simulated yields showed RMSE, NSE, IoA and PBIAS of 0.40, 0.26, 0.76 and 0.59 respectively. The 5, 9 and 15 year central moving averages showed $R^2$ of 0.78, 0.90 and 0.96 respectively after adjustment. AquaCrop was run for the 2020s (2011-2030), 2050s (2046-2065) and 2090s (2080-2099). Climate change projections for Geumho river basin generally indicate a hotter and wetter future climate with maximum increase in the annual temperature of $4.5^{\circ}C$ in the 2090s A1B, as well as maximum increase in the rainfall of 45 % in the 2090s A2. The means (and ranges) of paddy rice yields are projected to increase by 21 % (17-25 %), 34 % (27-42 %) and 43 % (31-54 %) for the 2020s, 2050s and 2090s, respectively. The A1B shows the largest rice yield uncertainty in all time slices with standard deviation of 0.148, 0.189 and $0.173t{\cdot}ha^{-1}$ for the 2020s, 2050s and 2090s, respectively.

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme (Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Chun, Beomseok;Jung, Younghun;Jang, Won Seok;Sur, Chanyang;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

Comparison Study of O/D Estimation Methods for Building a Large-Sized Microscopic Traffic Simulation Network: Cases of Gravity Model and QUEEENSOD Method (대규모 미시교통시뮬레이션모형 구축을 위한 O/D 추정 방법 성능 비교 - 중력모형과 QUEENSOD 방법을 중심으로 -)

  • Yoon, Jung Eun;Lee, Cheol Ki;Lee, Hwan Pil;Kim, Kyung Hyun;Park, Wonil;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • PURPOSES : The aim of this study was to compare the performance of the QUEENSOD method and the gravity model in estimating Origin-Destination (O/D) tables for a large-sized microscopic traffic simulation network. METHODS : In this study, an expressway network was simulated using the microscopic traffic simulation model, VISSIM. The gravity model and QUEENSOD method were used to estimate the O/D pairs between internal and between external zones. RESULTS: After obtaining estimations of the O/D table by using both the gravity model and the QUEENSOD method, the value of the root mean square error (RMSE) for O/D pairs between internal zones were compared. For the gravity model and the QUEENSOD method, the RMSE obtained were 386.0 and 241.2, respectively. The O/D tables estimated using both methods were then entered into the VISSIM networks and calibrated with measured travel time. The resulting estimated travel times were then compared. For the gravity model and the QUEENSOD method, the estimated travel times showed 1.16% and 0.45% deviation from the surveyed travel time, respectively. CONCLUSIONS : In building a large-sized microscopic traffic simulation network, an O/D matrix is essential in order to produce reliable analysis results. When link counts from diverse ITS facilities are available, the QUEENSOD method outperforms the gravity model.