DOI QR코드

DOI QR Code

Sensitivity Analysis of Global Wind-Wave Model

전지구 파랑 예측시스템의 민감도 분석

  • Park, Jong Suk (Global Environment System Research Division, National Institute of Meteorological Research/Korea Meteorological Administration) ;
  • Kang, KiRyong (Global Environment System Research Division, National Institute of Meteorological Research/Korea Meteorological Administration)
  • 박종숙 (기상청/국립기상연구소 지구환경시스템연구과) ;
  • 강기룡 (기상청/국립기상연구소 지구환경시스템연구과)
  • Received : 2012.09.03
  • Accepted : 2012.10.22
  • Published : 2012.10.31

Abstract

We studied the characteristics of spatial distribution of global wave height and carried out the modelsensitivity test by changing the input field, model resolution and physical factor (effective wind factor) since the spatial and temporal resolution in wind wave forecasting is one of most important factors. Comparisons among the different cases, and also between model, buoy and satellite data have been made. As a results of the wind-wave model run using the high resolution wind field, the bias of significant wave height showed the positive tendency and the Root-Mean Square Error(RMSE) was a bit decreased based on the comparison with buoy data. When the model resolution was changed to higher, the bias and RMSE was increased, and as the effective wind factor was smaller than default value(= 1.4) the bias and RMSE showed also decreasing pattern.

파랑 모델에서 시공간적인 해상도의 변경은 결과에 많은 영향을 끼친다. 본 연구에서는 모델 입력장의 해상도 변경, 파랑 모델의 해상도 변경 그리고 물리적 옵션에 따른 모델의 민감도를 분석하였다. 모델의 분석을 위해서 전지구 부이관측자료와 위성자료를 이용하였다. 고해상도의 입력장을 사용할 경우 유의파고를 과대 산정하는 경향을 보였고, RSME는 약간 감소하였다. 고해상도의 파랑 모델을 수행할 경우 평균편향 및 RMSE가 약간 증가하였다. 또한, 유효 해상풍 계수를 기존의 값인 1.4보다 작게 설정할 경우 편향과 RMSE가 모두 감소하였다.

Keywords

References

  1. 문일주, 오임상, 이동은, 윤용훈, 정순갑, 조주용 (1998). 한국근해의 파랑예측을 위한 제3세대 파랑모델 WAM의 적용, 한국기상학회지, 34(3), 446-455.
  2. 유승협, 박종숙 (2010). 지역 파랑 예측시스템과 해양기상 부이의 파랑 특성 비교 연구, 한국해양공학회지, (4(6호), 7-15.
  3. 박상욱 (2000). 기상청 파랑 수치예보 시스템, 예보국 수치예보과 기술노트 2000-2, 기상청, 88pp.
  4. 박상욱, 박종숙, 김금란 (2008). 전구 고해상도 파랑 예측시스템, 지구환경시스템연구과 기술보고서 2008-1, 국립기상연구소, 98pp.
  5. Abdalla, S. and Cavaleri, L. (2002). Effect of wind variability and variable air density on wave modeling. J. Geophys. Res., 107, C7, 17-1-20.
  6. Bauer, E. and R. Weisse (2000). Determination of high-frequency wind variability from observations and application to North Atlantic wave modeling. J. Geophys. Res.,105, C11, 26179-26190. https://doi.org/10.1029/1999JC000066
  7. Caires, S. and A. Sterl (2005). 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Climate, 18, 1032-1048. https://doi.org/10.1175/JCLI-3312.1
  8. Cavaleri, L. and Bertotti, L. (2004). Accuracy of the modelled wind and wave fields in enclosed seas. Tellus, 56, 167-175. https://doi.org/10.1111/j.1600-0870.2004.00042.x
  9. Cox, A. T. and V. R. Swail (2001). A global wave hindcast over the period 1958-1997: Validation and climate assessment. J. Geophys. Res., 106, 2313-2329. https://doi.org/10.1029/2001JC000301
  10. Hasselmann, K., Barnett, T.P., Bouws, E., Carison, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, K., Sell. W. and Walden, H. (1973). Measurements of Windwave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), Erg. Dtsch. Hydrogr. Z, Reihe A(8), No. 12, p 95.
  11. Kahma, K.K. and Calkoen, C.J. (1992). Reconciling discrepancies in the observed growth rates of wind waves. J. Phys. Oceanogr., 22, 1389-1405. https://doi.org/10.1175/1520-0485(1992)022<1389:RDITOG>2.0.CO;2
  12. Moon, I.-J., Ginis, I., Hara, T., Tolman, H.L., Wright, C.W. and Walsh, E.J. (2003). Numerical simulation of sea-surface directional wave spectra under hurricane wind forcing, J. Phys. Oceanogr., 33, 1680-1706. https://doi.org/10.1175/2410.1
  13. Ponce, S. and Ocampo-Torres, F.J. (1998). Sensitivity of a wave model to wind variability. J. Geophys. Res., 103, C2, 3179-3202. https://doi.org/10.1029/97JC02328
  14. Sterl, A., G. J. Komen and P.D. Cotton (1998). Fifteen years of global wave hindcasts using winds from the European Centre for Medium-range Weather Forecasts reanalysis: validating the reanalyzed winds and assessing the wave climate. J. Geophys. Res., 101(C3), 5477-5492
  15. Suchandra, A., B., Kumar, R., Chaudhuri, S. and Sarkar, A. (2011). Sensitivity study of a coastal wave model for prediction of ocean waves over indian ocean region. Marine Geodesy, 34, 167-180. https://doi.org/10.1080/01490419.2011.571564
  16. SWAMP Group (1985). Ocean Wave Modelling. Plenum Press, p 256.
  17. SWIM Group (1985). A Shallow Water Intercomparison of Three Numerical Wave Prediction Models (SWIM), Quart. J. Roy. Meteor. Soc., 111, 1087-1112. https://doi.org/10.1002/qj.49711147011
  18. Tolman, H.L. (1999a). User manual and system documentation of WAVEWATCH-III version 1.18. Tech. Note 166, NOAA/NWS/NCEP/OMB, 110pp.
  19. Tolman, H.L. (2002a). Alleviating the garden sprinkler effect in the wave models. Ocean Mod., 4, 269-289. https://doi.org/10.1016/S1463-5003(02)00004-5
  20. Tolman, H.L. (2002d). Testing of WAVEWATCH-III version 2.22 in NCEP's NWW3 ocean wave model suite. Tech. Note 214, NOAA/NWS/NCEP/OMB, 99pp.
  21. Tolman, H.L. (2002e). User manual and system documentation of WAVEWATCH-III version 2.22. Tech. Note 222, NOAA/NWS/NCEP/MMAB, 133pp.
  22. Tolman, H.L. and Chalikov, D.V (1996). Source terms in a thirdgeneration wind-wave model. J.Phys. Oceanogr., 26, 2497-2518. https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2
  23. WAMDI group (1988). The WAM model-a Third Generation Ocean Wave prediction Model. J. Phys. Oceanogr., 18, 1775-1810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
  24. Wang, X.L. and Swail, V.R. (2002). Trends of Atlantic wave extremes as simulated in a 40-year wave hindcast using kinematically reanalyzed wind fields. J. Climate, 15, 1020-1034. https://doi.org/10.1175/1520-0442(2002)015<1020:TOAWEA>2.0.CO;2

Cited by

  1. The Characteristics in the Simulation of High-resolution Coastal Weather Using the WRF and SWAN Models vol.23, pp.3, 2014, https://doi.org/10.5322/JESI.2014.23.3.409
  2. Development and Evaluation of an Ensemble Forecasting System for the Regional Ocean Wave of Korea vol.30, pp.2, 2018, https://doi.org/10.9765/KSCOE.2018.30.2.84