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Uncertainty of Simulated Paddy Rice Yield using LARS-WG Derived Climate Data 
in the Geumho River Basin, Korea

LARS-WG 기후자료를 이용한 금호강 유역 모의발생 벼 생산량의 불확실성

Nkomozepi, Temba D*․Chung, Sang-Ok*,†
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ABSTRACT
This study investigates the trends and uncertainty of the impacts of climate change on paddy rice production in the Geumho river 

basin. The Long Ashton Research Station stochastic Weather Generator (LARS-WG) was used to derive future climate data for the 
Geumho river basin from 15 General Circulation models (GCMs) for 3 Special Report on Emissions Scenarios (SRES) (A2, A1B 
and B1) included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. The Food and Agricultural 
Organization (FAO) AquaCrop, a water-driven crop model, was statistically calibrated for the 1982 to 2010 climate. The index of 
agreement (IoA), prediction efficiency (R2), percent bias (PBIAS), root mean square error (RMSE) and a visual technique were used 
to evaluate the adjusted AquaCrop simulated yield values. The adjusted simulated yields showed RMSE, NSE, IoA and PBIAS of 
0.40, 0.26, 0.76 and 0.59 respectively. The 5, 9 and 15 year central moving averages showed R2 of 0.78, 0.90 and 0.96 respectively 
after adjustment. AquaCrop was run for the 2020s (2011-2030), 2050s (2046-2065) and 2090s (2080-2099). Climate change projections 
for Geumho river basin generally indicate a hotter and wetter future climate with maximum increase in the annual temperature of 
4.5 °C in the 2090s A1B, as well as maximum increase in the rainfall of 45 % in the 2090s A2. The means (and ranges) of paddy 
rice yields are projected to increase by 21 % (17-25 %), 34 % (27-42 %) and 43 % (31-54 %) for the 2020s, 2050s and 2090s, 
respectively. The A1B shows the largest rice yield uncertainty in all time slices with standard deviation of 0.148, 0.189 and 0.173 t
· ha－1 for the 2020s, 2050s and 2090s, respectively.

Keywords: GCM; AquaCrop; climate change; paddy rice; uncertainty; yield

I. Introduction*

Rice (Oryza sativa) is grown in a wide range of climatic 

conditions, from river deltas to mountainous regions across 

the world (Seck et al., 2012). The optimum temperature for 

the normal development of rice ranges from 27 to 32 °C 

and it is widely accepted that climate change affects global 

agriculture through rising temperatures (Kumar et al., 2012). 

Impacts of changing precipitation regimes and increased 

atmospheric carbon dioxide (CO2) levels on rice yields vary 

across spatial and temporal scales (Ye et al., 2013). The 
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effects of climate change on rice production are of particular 

concern in most of Asia because it is the staple food 

(Zhang et al., 2010). The capacity to make regional yield 

prediction before harvest is important in many aspects of 

agricultural decision-making (Wang et al., 2010). Most crop- 

weather models are applicable to individual plots but can 

be broadly applied to larger scales based on their capability 

to interpret the impacts of weather variability on crop status 

and the projected yield at a regional basis (Yun, 2003). 

Crop models including AquaCrop (Raes et al., 2011), can 

be used to evaluate the future impacts of climate change 

on crop development, growth and yield by combining future 

climate conditions obtained from GCMs (Nkomozepi and 

Chung, 2011). 

In models, phenological crop development is controlled 

by the cumulative daily mean temperature above a minimum 

threshold value and higher temperatures shorten the length 
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of successive rice crop stages and consequently the total 

rice crop cycle (Supit, 2012). The AquaCrop model is 

preferable because a less complex structure is assumed 

and the number of input parameters is reduced by the 

use of a linear relation between biomass growth rate and 

transpiration through a water productivity parameter 

(Abedinpour et al., 2012). AquaCrop growth simulation model 

is therefore one of the most useful tools used to assess 

the impact of environment, crop management, genetics and 

breeding strategies, as well as climate change and variability 

on growth and yield (Craufurd et al., 2013). The simplicity 

of AquaCrop lies in the readily available input data and 

graphic user interface that makes it user-friendly (Singh 

et al., 2013).

Yun (2003) was able to project the rice production of 

each county in Korea with reasonable agreement about a 

month earlier than the actual harvest date. However, the 

crop model predictions of responses of plant-processes 

to the climate possess some degree of uncertainty generated 

through process and parameter systematic and random 

errors (Dono et al., 2013). For example in Gwangju, rice 

yields have been estimated to be reduced by 22.1 and 

35.0 % and conversely, to be increased by 12.6 and 22.0 % 

in a different emissions scenario by the end of the 21st 

century (Kim et al., 2013). The quantification of uncertainty 

is required to assess the forecast accuracy and aide in 

climate change adoption and mitigation management decisions 

(Nkomozepi and Chung, 2012). In a previous study, the 

paddy irrigation water requirement was predicted to increase 

by between 1.1 to 7.9 % as a result of climate change in 

the Geumho river basin (Chung and Nkomozepi, 2012). The 

objective of this study was to extend the previous study 

and to assess the trends and uncertainty of rice yield 

predictions given by multiple GCMs for the Geumho river 

basin.

II. Material and Methods

1. Study Area

The field data are representative of various experiments 

conducted in paddy fields near Daegu, the Republic of 

Korea (35° 45’ N, 128° 45’ E) which lies in the Geumho 

Fig. 1 Geumho River basin location map (Chung and 
Nkomozepi, 2012)

river basin (Fig. 1). The Geumho river basin is under the 

Asian monsoon climate with an annual mean temperature 

and precipitation of 14.1 °C and 1,064 mm, respectively, 

for the years 1982 to 2010. The average gross duty of 

paddy irrigation water per unit area in the Geumho river 

basin was reported to be 12,300 m3 ha－1 excluding effective 

rainfall of 3,300 m3 ha－1, and the average rice yield before 

milling was 6.01 ton ha－1 for the same period (Chung and 

Nkomozepi, 2012, Korean Statistical Office).

2. Climate Data

The change factor statistical adjustment and downscaling 

technique has previously been applied in related studies 

(Chung, 2010; Chung and Nkomozepi, 2012). The change 

factor method involves obtaining future weather variables by 

applying relative or absolute change factors to a predefined 

baseline range of weather variables. The LARS-WG was 

used in this study and is a better approach in that it 

considers the changes in both the mean and variability in 

the future. The observed monthly climate data i.e. daily 

temperatures, rainfall, wind speed, relative humidity and 

sunshine hours for Daegu and Yeongchon were obtained 

from the Korean Meteorological Administration (KMA) and 

the 1975s (1961-1990) were adopted as the baseline period. 

The observed weather data is used to determine the 

parameters that specify the probability distributions of 

weather variables and their correlation coefficients used 

in LARS-WG. Future climate data were then generated 

stochastically by perturbing the baseline climate with the 
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outputs from the GCMs using LARS-WG. The LARS-WG 

model simulates precipitation occurrence using a two-state, 

first order Markov chain: precipitation amounts on wet days 

using a gamma distribution; temperature and radiation 

components using first-order tri-variate auto-regression 

that is conditional on precipitation occurrence (Semenov 

and Barrow, 1997). 15 GCM (listed in Table 3) simulation 

results for 3 Special Report on Emissions Scenarios (SRES) 

scenarios (A2, A1B and B1) included in the IPCC 4th 

assessment report were used in this study. The greenhouse 

gas emissions scenarios are a reflection of the uncertainty 

of the future and GCMs striving to represent complex 

natural systems (Nkomozepi and Chung, 2012). In general, 

the A2, A1B, and B1 scenarios represent future scenarios 

of continuously increasing population, new and efficient 

technologies, and ecologically friendly, respectively. The 

annual mean atmospheric CO2 concentration is estimated 

to reach 856, 717, and 549 ppm by 2100 for A2, A1B, 

and B1, respectively (IPCC, 2007). Brief descriptions of the 

15 GCMs utilized in this study including their resolutions 

and the organizations and countries in which they were 

developed are available on http://www.rothamsted.ac.uk/ 

mas-models/larswg/GCMs.htm. Climate data for the 2020s 

(2011-2030), 2050s (2046-2065) and 2090s (2080-2099) 

time slices were used in this study. These three time 

horizons also correspond to the different requirements of 

different stakeholders.

3. AquaCrop Model

AquaCrop model has a structure that overarches the 

soil-plant-atmosphere continuum. It includes the soil, with 

its water balance; the plant, with its development, growth 

and yield processes; and the atmosphere, with its thermal 

regime, rainfall, irrigation, evaporative demand and carbon 

dioxide concentration. Additionally, some management aspects 

are explicitly considered, as they will affect the soil water 

balance, crop development and therefore crop yield. The 

functional relationships between the different model com-

ponents are depicted in Fig. 2 and detailed descriptions 

can be found in Raes et al. (2011). 

Input parameters for the AquaCrop model include crop, 

soil, irrigation and cultural management. Soil properties 

Fig. 2 Schematics of AquaCrop showing the main components 
of the soil-plant-atmosphere continuum (Raes et al., 
2011).

Table 1 Symptoms of heat stress in rice plants (Shah et 
al., 2011) 

Growth Stage
Threshold temperature 

(℃)
Symptoms

Emergence 40 Delay and decrease in emergence

Seedling 35 Poor growth of the seedling

Tillering 32 Reduced tillering and height

Anthesis 34 Poor anther dehiscence and sterility

Flowering 35 Floret sterility

Grain formation 34 Yield reduction

Grain ripening 29 Reduced grain filling

such as texture and rootable soil depth were investigated 

by experiments. A review by Shah et al. (2011) summarized 

the recent research findings on the responses of rice to 

high temperature, and reported the symptoms of heat stress 

as shown in Table 1. The temperatures shown here were 

considered in the crop parameters input file. Output includes 

crop growth, soil water balance, and yield and water pro-

ductivity. In this study, rice yields are not affected by 

rainfall because simulations were for full irrigated conditions.

4. AquaCrop Model Output Adjustment and Evaluation

Despite the lack of consensus and comprehensive 

guidance to facilitate AquaCrop model evaluation in terms 

of the accuracy, model results are used for assessment 

on different temporal and spatial scales. Model calibration 
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and validation is required and generally involves the 

alteration of parameters to compare simulated values with 

observed values (Tragoolram et al., 2011). The AquaCrop 

model, when calibrated and validated is suited for studies 

of future climate change because of its descriptive realism 

and reasonably good predictive power shown in various 

environments (Nkomozepi and Chung, 2011). In this study, 

AquaCrop simulated yield values were first adjusted for 

1982-2000 and then evaluated for 2000 to 2010. Observed 

yield (Ya) values for the evaluation period were obtained 

from the Korean Statistical Information Service (KOSIS). 

AquaCrop simulated rice yields (YAC) for the study area 

were generated by AquaCrop using the best possible 

available input data for each year from 1982 to 2010 

representative of the Geumho river basin. It was assumed 

that the Ya and YAC could be fitted to second order 

polynomial equations as a function of time and were related 

by a factor K, also a function of time (year) as shown in 

equation 1. An iterative procedure was carried out to derive 

K and transform YAC to be closer to Ya.

     (1)

where  is the actual yield,  is the simulated yield, 

 is a transformation function of year.

A function derived for K for 1982-2000 was validated 

for 2001-2010 and the process repeated until a satisfactory 

function which would be applied in the future simulated 

data were obtained. The final K adjusts YAC to Ys, which 

would be used in the assessment of future rice yields in 

the study area. While it is known that a good performance 

at simulating the Ya does not guarantee that future simu-

lations will be accurate, the calibration, evaluation or simple 

adjustment processes increase the likelihood that the future 

simulation values will be accurate and reliable. Commonly 

used statistics such as the index of agreement (IoA), 

prediction efficiency (R2), percent bias (PBIAS), root mean 

square error (RMSE) and a visual technique were used to 

evaluate the adjusted AquaCrop simulated yield values 

(Equations 2 to 5).
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where n is the number of pairs of observed () and 

adjusted simulated () rice yield data,  ′ and  ′ are 

the respective residuals.

III. Results and Discussion

1. Future Climate Change

Climate change projections for Geumho river basin generally 

indicate a hotter and wetter future climate as shown by 

the box and whisker plots in Fig. 3. The results indicate 

a maximum annual temperature increase of 4.5 ℃ in the 

2090s A1B, as well as a maximum rainfall increase of 45 % 

in the 2090s A2. Nevertheless, some models predicted 

decreases in rainfall of up to 14 % in the 2020s A2. As a 

result of the assumed higher CO2 emissions the A2 generally 

shows higher changes in temperatures and rainfall. It can 

also be noted that the changes shown in Fig. 3 will not 

elevate mean temperatures above the threshold temperatures 

shown in Table 1 but could drive daily or shorter span 

temperature above thresholds. In one study, exposure to 

41 ℃ for 4 hours at the flowering stage caused irreversible 

damage and plants became completely sterile (Shah et al., 

2011).

2. AquaCrop Model Output Adjustment and Evaluation

The results reveal an increasing trend in both the actual 

and AquaCrop simulated rice yields for the period 1982- 
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Fig. 3 The GCM predicted changes in rainfall and mean temperature

   

Fig. 4 AquaCrop model evaluation, (a) before adjustment and (b) After adjustment

2010. While a linear approach that assumes a constant 

rate of increase would be applicable, a second order pol-

ynomial approximation of the yield was used to account 

for the latest enhanced warming. The actual yield and the 

simulated yield values are shown in Fig. 4 (a). There are 

discrepancies between the two data sets in trend and 

variability. The actual and simulated yields transformed 

by the adjustment and evaluation process are shown in 

Fig. 4 (b). The iterative process was used to account for 

the uncertainty that arises as a result of the increase 

from field to larger catchment scale (e.g planting dates, 

cultivars and management practices etc that are distributed 

continuously throughout the Geumho river basin).

The adjusted simulated yields showed RMSE, NSE, IoA 

and PBIAS of 0.40, 0.26, 0.76 and 0.59 respectively. These 

values show that the adjusted simulated rice yield values 
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Fig. 5 Simulated changes in rice yield from the baseline (%)

are improved. IoA is a descriptive parameter that varies 

between 0 and 1, with the value of 1.0 indicating excellent 

agreement (Todorovic et al., 2009). NSE ranges between 

−∞ and 1.0 and values between 0.0 and 1.0 are viewed 

as acceptable levels of performance. Values less than 0 

indicate that the mean observed value is a better predictor 

than the simulated value, which indicates unacceptable 

performance (Moriasi et al., 2006). The PBIAS measures 

the average tendency of the simulated data to be larger 

or smaller than their observed counterparts and the results 

of this study shows that the simulated values are slightly 

larger than observed values. The 5, 9 and 15 year central 

moving averages showed prediction efficiency (R2) of 0.36, 

0.67 and 0.86 respectively before adjustment and 0.78, 0.90 

and 0.96 respectively after adjustment (Fig. 4). Longer 

period mean values were almost identical.

3. Rice Yield and Water Productivity

There is strong agreement between the 15 GCMs on 

the future rice yield as shown in Table 2 and Fig. 5. Rice 

yields will increase in the future with the CO2 fertilization 

and increased temperatures. The A2 Scenario shows the 

highest increases in yield of up to 54 % in the 2090s and 

the least increases in the 2020s B1. The means (and ranges) 

of paddy rice yields are projected to increase by 21 % 

(17-25 %), 34 % (27-42%) and 43 % (31-54 %) for the 

2020s, 2050s and 2090s, respectively. The interquartile 

range magnitude ranges from 2-4 % meaning there is little 

variability in the simulated yield. This is because models 

can show small differences in temperature but still be within 

the stipulated optimum temperatures. Large changes in yield 

are encountered when temperature go below 10 ℃ and 

beyond 35 ℃. 

Table 2 Predicted changes in the rice yield compared to 
the baseline (%)

GCM* 2020s 2050s 2090s

A2 A1B B1 A2 A1B B1 A2 A1B B1

BCM2 - 22 19 - 36 32 - 47 34

CGMR - 19 - - 35 - - 48 -

CNCM3 21 - - 35 - - 49 - -

CSKMK3 - 21 21 - 39 33 - 48 35

FGOALS - 24 22 - 39 33 - 50 37

GFCM21 22 25 20 38 35 31 53 46 35

GIAOM - 22 19 - 42 30 - 48 35

HADCM3 20 18 19 35 33 28 50 42 31

HADGEM 20 21 - 35 34 - - - -

INMCM3 19 19 18 35 35 30 53 48 34

IPCM4 21 21 18 34 34 28 49 43 31

MIHR - 20 17 34 27 - 43 32

MPEH5 22 24 21 39 35 31 54 47 32

NCCCSM 19 - - 35 - - 52 - -

NCPCM 21 23 - 38 38 - - - -

Average (range) 21 (17-25) 34 (27-42) 43 (31-54)

* Bjerknes Centre for Climate Research (BCM2), Canadian Centre for Climate 

Modeling and Analysis (CGMR), Centre National de Recherches Meteorologiques 

(CNCM3), Australia's Commonwealth Scientific and Industrial Research Organization 

(CSKMK3), Institute of Atmospheric Physics (FGOALS), Geophysical Fluid 

Dynamics Laboratory (GFCM21), Goddard Institute for Space Studies (GIAOM), 

UK Meteorological Office (HADCM3 and HADGEM), Institute for Numerical 

Mathematics (INMCM3), Institute Pierre Simon Laplace (IPCM4), National Institute 

for Environmental Studies (MIHR), Max-Planck Institute for Meteorology (MPEH5), 

National Centre for Atmospheric Research (NCCCSM and NCPCM).
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Fig. 6 Simulated changes in the water productivity (WP)

The water productivity (WP) (Kg m－3) is defined by 

Kassam and Smith (2001) as the ratio of the rice yield to 

the water consumption by evapotranspiration. There was 

little variation in changes in the WP across the GCMs and 

it was also predicted to increase in the future (Fig. 6). 

Generally WP is impacted by the changes in crop water 

requirements and simulated marketable yield. The highest 

increase was in 2090s A1B (57 %) and the lowest increase 

was 2020s A1B (11 %). This is beneficial because to meet 

the food requirement, crop management must adapt to 

climate variability, for example, by using crops that produce 

more biomass per amount of water used at the plant and 

the ecosystem levels (Tallec et al., 2013).

4. Uncertainty in the Predicted Rice Yield

The mean and standard deviation (SD) of the simulated 

future paddy rice yield are shown in Table 3. As pointed 

out in the previous section, the yield was predicted to 

increase in the future. The SD, an indicator of variability 

and uncertainty, was predicted to increase in the future 

within each emissions scenario. The A1B shows the largest 

uncertainty in all time slices with SD of 0.148, 0.189 and 

0.173 t ha－1 for the 2020s, 2050s and 2090s, respectively. 

However, when the yields from all scenarios are compared, 

the standard deviation is shown to decrease although it is 

still much greater than the intra-scenario standard deviation. 

Due to time and computational limitations, monthly values 

were used in this study and therefore extreme values in 

future climate scenarios are leveled off. The difficulty in 

accurate prediction of the potential impacts of climate change 

to yields further adds to the uncertainty. This study only 

Table 3 Mean and standard deviation of the baseline and 
future paddy rice yield (unit: t ha－1)

Scenario Baseline
2030s 2050s 2090 s

Mean SD Mean SD Mean SD

A2

6.95

8.38 0.091 9.44 0.122 10.52 0.142

A1B 8.45 0.148 9.46 0.189 10.18 0.173

B1 8.31 0.109 9.06 0.153 9.29 0.139

Total 8.34 0.132 9.33 0.243 9.95 0.540

considers climate change impacts on rice yields and further 

research should address how adaptation strategies such 

changing planting dates, other crop varieties etc., affect 

crop yield. 

IV. Conclusion

This study presented predictions of the impact of climate 

change on rice yields using climate data generated by 15 

GCMs. The AquaCrop model was successfully statistically 

calibrated (adjusted) for the 1982 to 2010 climate. In general, 

regardless of the SRES scenario the rice crop was predicted 

to benefit from the increasing temperature and atmospheric 

CO2 concentration. There is strong agreement between 

the 15 GCMs on the future rice yield and the average 

projected increase in the rice yields is 21 %, 34 % and 

43 % for the 2020s, 2050s and 2090s, respectively from 

the baseline of 6.95 t ha－1. The A1B shows the largest yield 

uncertainty in all time slices with standard deviation of 

0.148, 0.189 and 0.173 t ha－1 for the 2020s, 2050s and 

2090s, respectively. By the end of the 21st century rice 

yields could increase by up to 51 % and water productivity 

by up to 57 %. Although the research has reached its 

aims, there were some unavoidable limitations which were 

addressed by the assumptions of uniform variety and 

management practices in all farms in the study area and 

in the future. The study focuses solely on the impact of 

climate change therefore further research should address 

other factors affecting crop yield.

This research was supported by Basic Science Research 

Program through the National Research Foundation of 

Korea (NRF) funded by the Ministry of Education, 

Science and Technology (No. 2010-0007884) and by 

the Kyungpook National University Research Fund, 2012.
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