• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.038 seconds

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Estimation of spatiotemporal soil moisture distribution for Yongdam-dam watershed using Sentinel-1 C-band Synthetic Aperture Radar images (Sentinel-1 C-band SAR 영상을 이용한 용담댐 유역의 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.162-162
    • /
    • 2020
  • 토양수분은 TDR(Time Domain Reflectometry)이나 Tensiometer 등의 장비를 이용하여 측정을 시행하고 있으나, 이를 위해서는 많은 인력과 경제적 자원이 소비될 뿐만 아니라 시공간적으로 측정할 수 있는 범위에 한계가 있다. 지상 관측의 대안으로 MIRAS(Microwave Imaging Radiometer with Aperture Synthesis)나 SMAP(Soil Moisture Active Passive), AMSR2(Advanced Microwave Scanning Radiometer 2) 등의 수동 마이크로파 위성 센서를 이용한 공간 토양수분 관측이 수행되었으나, 낮은 공간 해상도(9~36km)는 지역 규모의 토양수분 분포를 나타내기 충분하지 않고, 높은 불확실성을 내포하고 있다. 본 연구에서는 금강 상류의 용담댐 유역(930.0㎢)을 대상으로 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 영상을 이용한 토지 피복 및 토양 속성을 고려한 10m 해상도의 토양수분 산출을 수행하였다. 용담댐 유역은 산림 79.7%, 논 9.0%, 밭 5.4%, 주거지 2.9%의 토지 피복 비율을 가지며 토양은 사양토(66.6%)와 양토(20.9%)가 우세하다. Sentinel-1 C-band SAR 영상은 SeNtinel Application Platform(SNAP)을 이용하여 전처리 후, 후방산란계수로 변환하였다. 토양수분 알고리즘은 TU-Wien change detection algorithm과 Regression model을 활용하였고, 검증을 위한 실측 토양수분 자료는 한국수자원공사(K-water)에서 제공하는 5년(2014~2018)간의 토양수분 관측자료를 이용하였다. 산출된 토양수분은 결정계수(Coefficient of determination, R2) 및 평균제곱근오차(Root Mean Square Error, RMSE)를 이용하여 실측 토양수분과 비교하였다. Sentinel-1 C-band SAR 영상을 이용한 고해상도의 토양수분 산출은 토지 피복 및 토양 속성을 고려한 지역 규모의 공간 토양수분 분포 및 시간적 변화를 표현 가능할 것으로 판단된다.

  • PDF

Assessment of water supply stability for Boryeong dam using future RCP climate change scenarios (RCP 기후변화 시나리오를 이용한 보령댐의 미래 용수공급 안정성 평가)

  • Kim, Wonjin;Kim, Jinuk;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.43-43
    • /
    • 2020
  • 보령댐은 충남 서부지역 8개 시·군에 생활용수와 공업용수를 공급하고 있는 중요한 수원으로 최근 우리나라에서 발생한 연속적인 가뭄으로 2015년에는 저수율이 7.5 %까지 감소하여 제한급수가 시행되었다. 본 연구에서는 가뭄으로 인한 물 공급 부족에 취약함을 보인 보령댐 유역(297.4 ㎢)을 대상으로 SWAT(Soil and Water Assessment Tool) 모델과 RCP(Representative Concentration Pathways) 시나리오를 활용하여 극한 기후변화 사상이 반영된 보령댐의 내한능력을 평가하였다. SWAT 모형을 활용하여 보령댐의 물수지를 모의하기 위하여 보령댐의 실측 유출량, 저수량, 방류량으로 보령댐 유입량과 저수량을 보정(2002~2004) 및 검정(2005~2007)하였으며, 실측 저수량을 기반으로 미래 댐 운영을 모의하였다. 검·보정 결과, 댐 유입량과 저수량의 PBIAS(%)는 -0.04, -0.09, NSE(Nash and Sutcliffe Efficiency)는 0.52, 0.96, RMSE(Root Mean Square Error)는 1.80 mm/day, 0.67 × 106㎥로 분석되어 신뢰성 있는 모의 결과를 보였다. 보정된 SWAT 모형으로 가뭄 사상이 반영된 기후변화를 모의하기 위하여 APCC의 26개 CMIP5 GCM 시나리오를 SPI (Standardized Precipitation Index)와 연속 이론(Runs theory)으로 분석하여 6개의 극한 가뭄 시나리오 (RCP 4.5, 8.5 CMCC-CM, INM-CM4, IPSL-CM5A-MR)를 선정하였으며, 선정된 시나리오를 모형에 적용하여 가뭄 사상을 반영한 보령댐의 미래 내한능력을 평가하였다. 내한능력평가 및 분석 기간은 Historical(1980~1999; 1990s), Present(2000~2019; 2010s), 그리고 미래 기간 (2020~2039; 2030s, 2040~2059; 2050s, 2060~2079; 2070s, 2080~2099; 2090s)으로 나누었으며, 취약성(Reliability), 회복성(Resilience), 위험성(Vulnerability), 세 가지 지표로 내한능력 평가를 수행하였다. 평가 결과, 미래 취약성은 2050s IPSL-CM5A-MR 시나리오에서 0.803까지 감소하였으며, 회복성과 위험성은 2070s IPSL-CM5A-MR 시나리오에서 0.003, 3,567.6 × 106㎥까지 감소하였다.

  • PDF

Assessing climate change response on runoff and T-N loads of rice growing season shift using coupled SWAT-APEX model (SWAT-APEX 연계 모형을 이용한 벼 생육기간 조절을 통한 기후변화 대응 영향 평가)

  • Kim, Dong Hyeon;Jan, Taeil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.200-200
    • /
    • 2020
  • 본 연구에서는 SWAT 모형과 APEX-Paddy 모형의 연계 모델링을 통한 대표 BMP(Best management practice) 적용, 정식시기 및 벼 생육기간을 고려한 시나리오 적용을 통해 농업용수의 관리 및 수질환경 개선 등에 활용할 수 있는 저영향 영농활동을 분석하고자 하였다. 만경강 유역을 대상으로 SWAT 모형을 구축하고 유역 내에 위치한 논 시험포장을 대상으로 강우-유출 및 비점오염원 모니터링 자료를 활용하여 APEX-Paddy 모형을 구축하였다. SWAT 모형과 APEX 모형을 연계하여 유역의 수문, 수질에 대한 정밀한 모델링을 수행하였으며, 이는 저영향 영농활동을 분석하기 위한 필드단위의 정확한 결과를 유역차원에 반영하기 위함이다. 특히, 본 연구에 사용된 APEX-Paddy 모형은 농촌진흥청과 Texas A&M의 공동연구를 통해 개발된 새로운 모형으로서 한국의 논 영농활동 및 담수환경을 반영하여 논에서의 유출 및 비점오염원을 모의할 수 있다. 연계 모형의 적합성 평가를 위해 R2 (Determine of Coefficient), RMSE (Root mean square error), NSE (Nash-sutcliffe efficiency)를 사용하였다. 적합성 평가 지표를 분석한 결과, 유출량은 R2 평균 0.91, RMSE 평균 2.87 mm/day, NSE 평균 0.78로 나타났다. T-N 부하량은 R2 평균 0.74, RMSE 평균 59.3 kg/ha/day, NSE 평균 0.50으로 나타났다. 저영향 영농활동 관리방안을 위한 시나리오로 1) 논의 물꼬높이(BMP) 관리 적용, 2) 벼 생육기간 조절을 고려하여 기온변화에 따른 정식시기, 벼 생육기간 등을 조정하여 적용하였다. 기후변화 시나리오는 10개 GCM 모델의 RCP 8.5 시나리오를 통해 분석하였으며, 유역차원의 미래 영향을 분석한 결과, 물꼬관리 BMP에 따라 담수심이 증가되며, 관개량이 감소하고 유출량 10.7%, T-N 11.2% 저감되는 것을 나타냈으며, 벼 생육기간 조절은 BMP보다 상대적으로 효과가 높진 않았지만, 유출량 1.4%, T-N 3.1%의 저감효과를 나타냈다. 따라서 두 가지의 저영향 영농활동 관리방안은 미래기간의 기후변화에 대응하여 농업용수 및 물관리에 도움이 될 것으로 사료된다. 하지만 본 연구결과는 모델링 결과에 의존한 것이며, 추후 지속적인 연구와 보완이 필요하다.

  • PDF

A study on coupled SWAT and CFD models of regulating gate operation in small agricultural watershed (농촌소유역에서의 제수문 기작을 고려한 유역-전산유체역학 연계 모델링 기초연구)

  • Kim, Dong Hyeon;Jang, Taeil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.262-262
    • /
    • 2020
  • 새만금 유역 내에는 다수의 보 및 제수문이 위치하고 있으며, 관개, 배수, 오염원 등이 영향을 받고 있다. 선행연구 중에는 보 및 제수문을 고려하기 위해 모형의 소스코드를 일부 수정하여 연구되고 있으나 유역모형으로 구현하기에는 한계가 있으며, 이에 대한 연구는 미흡한 실정이다. 본 연구에서는 만경강 유역을 대상으로 유역 모형과 전산유체역학 모형을 이용하여 하류 제수문에 대한 유입, 유출 그리고 오염원 등의 영향을 분석하고자 한다. SWAT (Soil and water assessment tool)은 유역 모형으로 미국 농무부에서 농업유역의 수문순환 및 비점오염원을 모의하기 위해 개발한 모형이다. CFD (Computational fluid dynamics)는 전산유체역학 모형으로 구조물을 설계하고 유체, 기체 등을 모의할 수 있다. SWAT 모형을 이용하여 농업유역 하류 제수문 위치를 출구로 지정하여 수문을 모의하고 그 결과자료는 CFD에 입력할 수 있다. CFD는 하류 제수문 구조물을 설계하고 SWAT 모형의 수문자료를 입력하여 제수문의 영향을 평가할 수 있다. 우선, 만경강 유역을 대상유역으로 선정하고 부용, 황산, 상리, 고은교 등 제수문의 위치를 파악하였다. SWAT 모형 구축을 위해 2015-2018년까지 기상, 수위, 유량 관측자료를 수집하였으며, 보정기간과 검증기간은 각 2년이며, 모형 성능 검증에 사용한 적합성 평가 지수는 R2 (Determine coefficient), RMSE (Root mean square error), 그리고 NSE (Nash-sutcliffe efficiency coefficient)를 사용하였다. 모형의 보정은 SWAT-CUP 자동보정프로그램을 사용하였으며, 모형의 보정지수는 NSE를 사용하였고, 1,000회 반복 수행을 통해 매개변수를 최적화하였다. 보정기간의 유출량 적합성 평가 지수는 R2, RMSE 그리고 NSE가 각각 0.84, 2.96 mm/day, 0.70을 나타냈다. 검증기간의 유출량 적합성 평가 지수는 R2, RMSE 그리고 NSE가 각각 0.72, 2.94 mm/day, 0.46을 나타냈다. 본 연구는 유역 차원과 구조물 차원의 모델링을 연계하는 것으로 향후 제수문 모니터링 자료를 활용하여 CFD 모형을 구축하고 유입량에 따른 제수문의 검보정 및 영향을 평가하고자 한다. 이러한 결과는 최근 기후변화에 따라 급격히 변화하는 유역환경에 대처할 수 있는 방안이 될 수 있을 것이며, 제수문 시설을 관리하는 기관에서도 합리적인 운영방안에 대한 기초자료로 기여할 수 있을 것으로 사료된다.

  • PDF

The assessment of performances of regional frequency models using Monte Carlo simulation: Index flood method and artificial neural network model (몬테카를로 시뮬레이션을 이용한 지역빈도해석 기법의 성능 분석: 홍수지수법과 인공신경망 모델)

  • Lee, Joohyung;Seo, Miru;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.156-156
    • /
    • 2021
  • 본 연구는 지역빈도해석을 기반으로한 인공신경망 모델과 기존에 널리 사용되는 방법인 홍수지수법의 성능을 몬테카를로 시뮬레이션을 이용하여 평가하였다. 컴퓨터 기술이 발달함에 따라 인공지능에 대한 접근성이 좋아지며 수문학을 포함한 다양한 분야에 적용되고 있다. 인공지능을 이용하여 강수량 및 유량 등 다양한 수문자료에 대한 예측이 이루어지고 있으나 빈도해석에 관한 연구는 비교적 적다. 본 연구에서 사용된 인공 지능 모델은 대상 지점의 지형학적 자료와 수문학적 자료를 이용하여 인공신경망을 통해 지점의 확률강우량(QRT-ANN) 및 확률분포형의 매개변수 (PRT-ANN)를 추정한다. 지형학적 자료로는 위도, 경도 그리고 고도가 사용되었으며 수문학적 자료로는 대상 지점의 최근 30년 일일연최대강우량을 사용하였다. 지역빈도해석의 정확도는 지역 내 통계적 특성이 비슷한 지점들이 포함되면 될수록 높아진다. 통계적 특성으로는 불일치 척도, 이질성 척도, 적합성 척도가 있으며 다양한 조건의 통계적 특성에 따른 세 개의 지역빈도해석 방법의 성능을 평가하고자 하였다. 대상 지역 내 n개의 지점이 있다고 가정하였을 때, 홍수지수법의 경우 n-1개의 지점으로 추정한 지역 성장곡선을 이용하여 나머지 1개 지점의 확률강우량을 산정할 수 있으며 인공신경망 모델들 또한 n-1개 지점들의 자료를 이용하여 모델을 구축한 뒤 나머지 지점의 확률강우량 및 확률분포형의 매개변수를 예측할 수 있다. PRT-ANN의 경우 예측된 매개변수를 이용하여 확률강우량을 산정하며 시뮬레이션 시행마다 발생시킨 자료의 지점빈도해석 결과에 대한 나머지 세 방법의 평균 제곱근 상대오차 (Relative root mean square error, RRMSE)를 계산하였다. 몬테카를로 시뮬레이션을 이용한 성능 분석을 통하여 관측값의 다양한 통계적 특성에 맞는 지역빈도해석 방법을 제시할 수 있을 것으로 판단된다.

  • PDF

An optimized ANFIS model for predicting pile pullout resistance

  • Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.179-190
    • /
    • 2023
  • Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).

Object Tracking Using Adaptive Scale Factor Neural Network (적응형 스케일조절 신경망을 이용한 객체 위치 추적)

  • Sun-Bae Park;Do-Sik Yoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.522-527
    • /
    • 2022
  • Object tracking is a field of signal processing that sequentially tracks the location of an object based on the previous-time location estimations and the present-time observation data. In this paper, we propose an adaptive scaling neural network that can track and adjust the scale of the input data with three recursive neural network (RNN) submodules. To evaluate object tracking performance, we compare the proposed system with the Kalman filter and the maximum likelihood object tracking scheme under an one-dimensional object movement model in which the object moves with piecewise constant acceleration. We show that the proposed scheme is generally better, in terms of root mean square error (RMSE) performance, than maximum likelihood scheme and Kalman filter and that the performance gaps grow with increased observation noise.

Development and performance evaluation of lateral control simulation-based multi-body dynamics model for autonomous agricultural tractor

  • Mo A Son;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Wan Soo Kim;Yeon Soo Kim;Dae Yun Shin;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, we developed a dynamic model and steering controller model for an autonomous tractor and evaluated their performance. The traction force was measured using a 6-component load cell, and the rotational speed of the wheels was monitored using proximity sensors installed on the axles. Torque sensors were employed to measure the axle torque. The PI (proportional integral) controller's coefficients were determined using the trial-error method. The coefficient of the P varied in the range of 0.1 - 0.5 and the I coefficient was determined in 3 increments of 0.01, 0.05, and 0.1. To validate the simulation model, we conducted RMS (root mean square) comparisons between the measured data of axle torque and the simulation results. The performance of the steering controller model was evaluated by analyzing the damping ratio calculated with the first and second overshoots. The average front and rear axle torque ranged from 3.29 - 3.44 and 6.98 - 7.41 kNm, respectively. The average rotational speed of the wheel ranged from 29.21 - 30.55 rpm at the front, and from 21.46 - 21.63 rpm at the rear. The steering controller model exhibited the most stable control performance when the coefficients of P and I were set at 0.5 and 0.01, respectively. The RMS analysis of the axle torque results indicated that the left and right wheel errors were approximately 1.52% and 2.61% (at front) and 7.45% and 7.28% (at rear), respectively.

Developing GPS Code Multipath Grid Map (CMGM) of Domestic Reference Station (국내 기준국의 GPS 코드 다중경로오차 격자지도 생성)

  • Gyu Min Kim;Gimin Kim;Chandeok Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2024
  • This study develops a Global Positioning System (GPS) Code Multipath Grid Map (CMGM) of each individual domestic reference station from the extracted code multipath of measurement data. Multipath corresponds to signal reflection/refraction caused by obstacles around the receiver antenna, and it is a major source of error that cannot be eliminated by differencing. From the receiver-independent exchange format (RINEX) data for two days, the associated code multipath of a satellite tracking arc is extracted. These code multipath data go through bias correction and interpolation to yield the CMGM with respect to the azimuth and elevation angles. The effect of the CMGM on multipath mitigation is then quantitatively analyzed to improve the Root Mean Square (RMS) of averaged pseudo multipath. Furthermore, the single point positioning (SPP) accuracy is analyzed in terms of the RMS of the horizontal and vertical errors. During two weeks in February 2023, the RMSs of the averaged pseudo multipath for five reference stations decreased by about 40% on average after CMGM application. Also, the SPP accuracies increased by about 7% for horizontal errors and about 10% for vertical errors on average after CMGM application. The overall quantitative analysis indicates that the proposed approach will reduce the convergence time of Differential Global Navigation Satellite System (DGNSS), Real-Time Kinematic (RTK), and Precise Point Positioning (PPP)-RTK correction information in real-time to use measurement data whose code multipath is corrected and mitigated by the CMGM.