• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.034 seconds

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Development of machine learning prediction model for weight loss rate of chestnut (Castanea crenata) according to knife peeling process (밤의 칼날식 박피공정에 따른 머신 러닝 기반 중량감모율 예측 모델 개발)

  • Tae Hyong Kim;Ah-Na Kim;Ki Hyun Kwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.236-244
    • /
    • 2024
  • A representative problem in domestic chestnut industry is the high loss of flesh due to excessive knife peeling in order to increase the peeling rate, resulting in a decrease in production efficiency. In this study, a prediction model for weight loss rate of chestnut by stage of knife peeling process was developed as undergarment study to optimize conditions of the machine. 51 control conditions of the two-stage blade peeler used in the experiment were derived and repeated three times to obtain a total of 153 data. Machine learning(ML) models including artificial neural network (ANN) and random forest (RF) were implemented to predict the weight loss rate by chestnut peel stage (after 1st peeling, 2nd peeling, and after final discharge). The performance of the models were evaluated by calculating the values of coefficient of determination (R), normalized root mean square error (nRMSE), and mean absolute error (MAE). After all peeling stages, RF model have better prediction accuracy with higher R values and low prediction error with lower nRMSE and MAE values, compared to ANN model. The final selected RF prediction model showed excellent performance with insignificant error between the experimental and predicted values. As a result, the proposed model can be useful to set optimum condition of knife peeling for the purpose of minimizing the weight loss of domestic chestnut flesh with maximizing peeling rate.

Development of Time-dependent mean Temperature Equations for GPS Meteorology

  • Ha, Jihyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.143-147
    • /
    • 2014
  • The mean temperature is one of the key parameters in computing Precipitable Water Vapor (PWV) from Global Positioning System (GPS) measurements and is usually derived as a function of surface temperature through the use of a mean temperature equation (MTE). In this study, two new types of MTEs were developed as functions solely of the observation time so that the mean temperature can be obtained without surface temperature measurements. To validate the new models, we created one-year time series of GPS-derived PWV using the new MTEs and compared them with the radiosonde-observed PWV. The bias and root-mean-square error were on the other of ~1 mm and ~2 mm, respectively.

Bayesian Image Reconstruction Using Edge Detecting Process for PET

  • Um, Jong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1565-1571
    • /
    • 2005
  • Images reconstructed with Maximum-Likelihood Expectation-Maximization (MLEM) algorithm have been observed to have checkerboard effects and have noise artifacts near edges as iterations proceed. To compensate this ill-posed nature, numerous penalized maximum-likelihood methods have been proposed. We suggest a simple algorithm of applying edge detecting process to the MLEM and Bayesian Expectation-Maximization (BEM) to reduce the noise artifacts near edges and remove checkerboard effects. We have shown by simulation that this algorithm removes checkerboard effects and improves the clarity of the reconstructed image and has good properties based on root mean square error (RMS).

  • PDF

Fuzzy logic approach for estimating bond behavior of lightweight concrete

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • In this paper, a rule based Mamdani type fuzzy logic model for prediction of slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes were discussed. In the model steel rebar diameters and development lengths were used as inputs. The FL model and experimental results, the coefficient of determination R2, the Root Mean Square Error were used as evaluation criteria for comparison. It was concluded that FL was practical method for predicting slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes.

An Edge-detecting Bayesian Image Reconstruction for Positron Emission Tomography

  • Um, Jong-Seok;Choi, Byong-Su
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.817-825
    • /
    • 1997
  • Images reconstructed with EM algorithm have been observed to have checkerboard effects and have large distortions near edges as iterations proceed. We suggest a aimple algorithm of applying line process to the EM and Bayesian EM to reduce the distortions near edges. We show by simulation that this algorithm improves the clarity of the reconstructed image and has good properties based on root mean square error.

  • PDF

A Study on the SPICE Model Parameter Extraction Method for the BJT DC Model (BJT의 DC 해석 용 SPICE 모델 파라미터 추출 방법에 관한 연구)

  • Lee, Un-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1769-1774
    • /
    • 2009
  • An algorithm for extracting the BJT DC model parameter values for SPICE model is proposed. The nonlinear optimization method for analyzing the device I-V data using the Levenberg-Marquardt algorithm is proposed and the method for calculating initial conditions of model parameters to improve the convergence characteristics is proposed. The base current and collector current obtained from the proposed method shows the root mean square error of 6.04% compared with the measured data of the PNP BJT named 2SA1980.

The Regional-Scale Weather Model Applications for Hydrological Prediction (수문학적 예측을 위한 지역규모 기상모델의 활용)

  • Jung, Yong;Baek, Jong-Jin;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.936-940
    • /
    • 2012
  • 충분한 선행시간을 확보한 강우의 정확한 예측은 홍수피해를 저감하기 위한 필요한 조건이다. 이를 위해 지역규모의 기상모델인 Advanced Research WRF (ARW)를 적용하여 지역에 맞는 강우 예측에 가장 밀접한 관계를 갖는 물리학적 요소들의 최적화된 조건을 찾아보려 한다. 이를 위해 2006년의 7월의 강우에 대한 분석을 실시하고 생극과 분천의 강우 관측치 와의 비교를 통해 (Root Mean Square Error와 Index of Agreement 활용), ARW의 수문학적 예측을 위한 적용 가능성을 보려 한다.

  • PDF

Analysis of the Combined Positioning Accuracy using GPS and GLONASS Navigation Satellites

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this study, positioning results that combined the code observation information of GPS and GLONASS navigation satellites were analyzed. Especially, the distribution of GLONASS satellites observed in Korea and the combined GPS/GLONASS positioning results were presented. The GNSS data received at two reference stations (GRAS in Europe and KOHG in Goheung, Korea) during a day were processed, and the mean value and root mean square (RMS) value of the position error were calculated. The analysis results indicated that the combined GPS/GLONASS positioning did not show significantly improved performance compared to the GPS-only positioning. This could be due to the inter-system hardware bias for GPS/GLONASS receivers, the selection of transformation parameters between reference coordinate systems, the selection of a confidence level for error analysis, or the number of visible satellites at a specific time.

An Incremental Regression Model for Time Series Data Prediction (시계열 데이터 예측을 위한 점진적인 회귀분석 모델)

  • Kim Sung-Hyun;Lee Yong-Mi;Jin Long;Seo Sung-Bo;Ryu Keun-Ho
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.23-26
    • /
    • 2006
  • 기존의 데이터 마이닝 예측 기법 중 회귀분석은 학습 단계에서 생성된 모델을 변경 없이 새로운 데이터에 적용하였다. 그러나 시계열 데이터에 모델 변경 없이 동일하게 적용하면 시간이 지남에 따라 정확도가 낮아지는 단점이 있다. 따라서 이 논문에서는 시간에 따라 변화하는 시계열데이터의 특성을 고려하여 점진적으로 회귀 모델을 갱신하는 기법을 제안한다. 이 기법은 입력되는 모든 데이터를 회귀 모델에 적용하여 점진적으로 모델을 갱신한다. 제안된 기법의 타당성은 RME(Relative Mean Error)와 RMSE(Root Mean Square Error)를 이용하여 측정하였다. 정확도 측정 실험 결과 제안 기법인 IMQR(Incremental Multiple Quadratic Regression) 기법이 MLR(Multiple Linear Regression), MQR(Multiple Quadratic Regression), SVR(Support Vector Regression) 기법에 비해 RME 가 평균 2%, RMSE 가 평균 0.02 정도 우수한 결과를 얻었다.

  • PDF