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An Edge-detecting Bayesian Image Reconstruction
for Positron Emission Tomography
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Abstract

Images reconstructed with EM algorithm have been observed to have checkerboard
effects and have large distortions near edges as iterations proceed. We suggest a
simple algorithm of applying line process to the EM and Bayesian EM to reduce the
distortions near edges. We show by simulation that this algorithm improves the
clarity of the reconstructed image and has good properties based on root mean square
erTor,

1. Introduction

Positron emission tomography (PET) is a radiological technique to image the biological
function of tissue in the organ. A subject is injected with a quantity of a positron emitting
radioisotope. When the isotope decays, a pair of photons is emitted along a straight line from
the anihilation site in the opposite directions. The direction of the line of flight is random in
the space. Emitted photons are counted by a machine consisting of detectors. A pair of

detectors which detect a pair of emitted photons is called detector tube. Let f(x) be the
intensity of the image at the point x and g(») be the recorded intensity at the detector tube
y. Then we have the relationship between f and g by an operator R with g =R f. The
reconstruction problem is to estimate f given the data g. This is a mathematical inversion
problem of solving equation g =R f for f when g is given and R is known. The
operator R is linear and this problem is called linear inverse problem with positive
constraints. In transformation method, R is a line integral Radon transformation and f is
obtained from the inverse Radon transformation(Herman, 1980).

Alternatively, first dicretize the domain of f and g and then estimate f according to
optimization criteria, which is called series expansion methods. In this discretizing setting, the

data consist of a vector of counts detected in the dth detector tube n°(d), d=12, -, D,
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where D is the total number of detector tubes. Let A(5) be the emission intensity at a point
b in the image, b=1,2,---, B, where B is the number of boxes in the image. Usually we
choose a box as a pixel in the image. Assuming #'(d) as Poisson distribution with
parameter A"(d), optimization criteria is to maximize likelihod function. Let #n(b,d) be the
random variable denoting the number of radioactive emissions occuring in the pixel b and
detected at the tube d. Regarding #(b,d) as unobserved data and #°(d) as observed data,
EM algorithm is applicable to find A(d), b=1,2, ++, B, which maximize likelihood function
p(? I_/i) (Vardi, shepp and Kaufman, 1985). However, EM algorithm have been observed to
become noisy and have large distortions near edges as the algorithm converges toward the
maximum likelihood estimates. Introducing a priori probability, maximum a posteriori image

reconstruction using EM algorithm, Bayesian EM(BEM), prevents the occurrence of
checkerboard effects in the image.

In this paper, we suggest a simple algorithm of applying line process to the EM and BEM
to reduce the.distortions near edges. We show by simulation that this algorithm improves the

clarity of the reconstructed image and has good properties based on root mean square
error(RMS).

2. Modeling for the PET

2.1 Likelihood for the emission counts
Let p(b,d) be the conditional probability that an emission, occured in pixel b, is detected in
tube d. Then 77(d), total number of emittions detected in tube &, has poisson distribution

with mean A*(d)= 21'1( b)p(b,d). Here p(b,d)’s are assumed known nonnegative constants.

It depends on various factors: the geometry of the dete-ction system, the activity of the isotope
and exposure time, and the extent of attenuation and scattering between source and detectors.
Here we estimate (b, d) as the angle of view from the center of the pixel & into tube d.
Log of likelihood function is as follow

L) = 2~ S ABKb, D+ 7' In( ZADKb, D) (1)

Applying EM algorithm, we have the following iterative formula(Vardi, Shepp and Kaufman,
1985)

n*()p(b, d)
2270, D |

/1 neuJ( b) — /lold(b) 21




Image Reconstruction for PET 819

2.2 priors for the emission intensity

Images reconstructed by using EM algorithm have been observed to become noisy and to
have checkerboard effects. Also, these have large distortion near edges as the algorithm
converges to the MLE. Snyder and Miller(1985) use Grenader’s method of sieves to stabilize
the results. Levitan and Gabor(1987) use a Gaussian prior, called penalty function, to prevent
the occurrence of checkerboard effects. Since the posterior is sensitive only to local properties
of priors, we use Markov Random Field(MRF) as priors. Hammersly—-Clifford theorem states
that Gibbs distribution is MRF, which has following form

(D) < exp(— ZVe(D),

where ¢ is a clique and C is the collection of all cliques. A local set of point ¢ is clique if
(b, ") are neighbors for V (b, b )ec. Green(1990) suggests VC(_/T) as follow;

v.(D) =8 (b_;,;ecwwlog cosh(i@%b—'l),

where w,; is a weight and wyy =1 if (b, ) are orthogonal neighbors, v 1/2 if (b, 5" ) are

diagonal neighbors and O otherwise. Bouman and Sauer(1993) propose edge-preserving prior,
called generalized Gaussian Markov random field, which allows realistic edge modeling having
form

np(D) = — B(Zlad(B)*+ 2 3 walA(0) = A6 1*) + constant,

where 1<%k<2. GGMRF includes Gaussian MRF when =2 and is similar to median pixel
prior suggested by Besag(1986) when %2=1. It includes only pair interaction in the clique.
2.3 Bayesian EM(BEM)

With GGMRF prior, we have the posterior as follow

ns(in) = 32 n"(@) In(TADKb, )~ ZZAB b, d) — VD) + comstani
where V(D) = Y Zad(®*+ 2 X wwld(0)—A(6)1F).

ceC (b

Let 2(b,d)be an estimate of unobserved data #(b,d) given observed data n°(d). Then

2b,d) = E(n(b, d)n*(d) = n"(d) '}&,)p’(’b,,d).

Using this result, we have the following result at the expectation step
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E(inp(7, n)ln’, B) = 222(b, ) In ()b, d) — ZZA)(b, D — V(D).

At the maximization step, find a estimate of _/T which maximize above equation and go back

. . . i . .
to expectation step putting the estimate as _/To . Instead of direct maximization, we use
one-step-late(OSL) approximation proposed by Green(1990). We have the following iterative
equation

;z( b, d)

A V(A) ot
Zob. D+ Gy 1 a=A"

A"(b)=

Green(1990) uses Bayesian reconstruction for PET and there are lack of clarity in the
reconstructed image near edges.

3. Bayesian EM with line process(LBEM)

The objective of the line process is to detect the presence and identify the location of
intensity changes in an image and then to eliminate the pixels having edge element from
neighborhood. Let 4 b,6") = 1 if there exists edge element between pixel & and &, 0 if
not. We use hierachical model for the priors. Then edge-preserving priors with line process
has the following form

s, 1) cexp{ — ViQATH - VD)),
ViATD) = B Zak(®)*+ Z, 3 (1= Kb, 0" NwwlA() —a(8)1*).

Geman and Geman(1984) use clique of size four to construct V3(7). Applying EM
algorithm with the above prior and Poisson likelihood function, we have

;z( b, d)

S, ay+ LGAD o

A"(b) =

Kb,6") "™ =1or 0 which minimize {Vi(A[7)+ Vo(T) ;=2 = I,

Here we determine X b,5’) using empirical distribution of the difference of the pixel
intensities of & and b . Here is the procedure for the line process. We call it as empirical
line process. First, we consider clique of size four and four types of pair interactions:
horizonal, vertical, right-skewed diagonal and left-skewed diagonal. Let F; be the empirical
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distribution of d;(b, ) with (b,b") e c where dy(b,b") is the difference of the two pixel
intensities of itype pair interaction, 7 =1,2,3,4 with i=1,2,,N, the number of two
neighboring pixels. Second, determine the p; which is the proportion of pixels having 7type
edge relations in the image. The p; is determined by examining the empirical distribution of
d;(b, b ). If there is the point from which the right side is flat, then p; is the right-tail
probability from this point. Third, find (1—#;)® percentile point of F;, Fi'(1—5;, and
determine Kb, b )=1if dyi(b,b") = Fi'(1—p;) and 0 otherwise. The LBEM algorithm is

as follows.

Step 1: Apply BEM(Bayesian EM) to the data with initial estimate 7(0).

‘Step 2: Applying the empirical line process to the result obtained after K iterations of
BEM, determine 1(b,0).

Step 3: Calculate A ™“(b) and go to Step 2 with the data A"*(d) until it satisfies the
convergence criteria.

When this algorithm is applied to the result obtained after K iteration of EM, we call it
LEM(EM with line process). '

4. Simulations and Results

We study two-dimensional reconstruction. We assume a single ring of radius V2 with
equally spaced detectors around the phantom with B=100%100. We use the phantom in Fig.
1(a), which is used to generate the data and which we want to reconstruct. The histogram of
the 10% counts drawn from the phantom of Fig. 1(a) at a rate proportional to A(b,d) is in

Fig. 1(d). We use uniform values as initial estimate of . The images in Fig. 1(b), (c), (e)
and (f) are the results of the EM, BEM, LEM and LBEM algorithm after 32 iterations
respectively. The image with EM has checkerboard effects as expected. To apply BEM, we
use B=0.01, #=1.05 and a,=0 for b=1,2,..,B as parameters for the prior.
Checkerboard effects are suppressed in the image of BEM. The reconstructed images are
settled down around 20 iterations according to our simulation. However, it shows the lack of
clarity around edges. We adapt the empirical line process to the result of EM and BEM after
16 iterations respectively. We choose K=16. The result of LEM after 32 iteratons( including 16
iteration of EM) shows suppression of the noise and improvements around edges. Since
empirical line process introduce a prior in the model, this algorithm has smoothing effects on
the image except edges. The result of LBEM after 32 iteratons( including 16 iteration of
BEM) shows improvement of the clarity around edges. The results of applying empirical line
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Fig. 1 (a) real image (b) EM after 32 iterations (c) BEM after 32 iterations
(d) histogram of 10° emissions (e),(f) LEM and LBEM after 32 iterations resp.

Fig. 2 (a) real image (b) EM after 64 iterations (c) BEM after 64 iterations
(d) histogram of 10° emissions (e),(f) LEM and LBEM after 64 iterations resp.
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Fig. 4 Line plot of real, histogram, LEM and LBEM through the 44th column.

process (LEM and LBEM) show clear edge elements compare to the result of EM and of
BEM. The differences between Fig.1(b)(c) and Fig. 1(e)(f) occur at the edge points. The

results of 64 iteration are given in Fig. 2. Fig. 2(a)(d) are same as Fig 1.(a)(d). The images
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Root mean square error of EM, BEM, LEM and LBEM

in Fig. 2(b), (c), (e) and (f) are the results of the EM, BEM, LEM and LBEM algorithm after
64 iterations respectively. The reconstructed image with EM tends to get worse as the

iterations go on. The results of LEM and LBEM show the clear improvement in the noise and
edges. To check the accuracy, we draw a line plot of the 44th column from the left of the
images obtained after 64 iterations. In Fig. 3, line plot of real, histogram, EM and BEM are
drawn. In Fig. 4, a line plot of real, histogram, LEM and LBEM are drawn. These show that

EM has noise artifacts, BEM suppresses noise artifacts but has smoothing effect at the edges.

LEM and LBEM detect edge elements correctly at the edges. We compare root mean square
error(RMS) as an overall measure of reconstruction accuracy.

J 20 A
RMS = .

B

In Fig. 5, RMS of EM is increased as iterations go on. This indicates that reconstructed

image is deteriorated by noise as iterations go on. Since BEM has smoothing effects, RMS is

decreased. RMS of LLEM and LBEM are decreased until 32 iterations and then those are

stabilized as iterations proceed. Because of edge elements, there is not much changes in the
reconstructed images.
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5. Conclusions

In this paper we propose a line process for EM and BEM, we call LEM and LBEM
respectively, for image reconstruction of PET. These algorithms suppress the checkerboard
effects occuring in the EM algorithm and overcome the smoothing effects near edges occuring
in the BEM. Based on RMS, reconstructed images using these algorithms have become stable
as iterations proceed. Appropriate choice of priors is important since the results are sensitive
to the priors.
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