• Title/Summary/Keyword: root and leaf

Search Result 1,822, Processing Time 0.032 seconds

Production of Antifungal Compost by Using Bacillus licheniformis KJ-9 (Bacillus licheniformis KJ-9를 이용한 항균발효퇴비의 생산)

  • Seo, Dong-Cheol;Ko, Jeong-Ae;Lee, Sang-Won
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1339-1344
    • /
    • 2010
  • In order to produce environmental-friendly fermented compost, a cattle manure-sawdust compost (antifungal compost) was developed by inoculation of B. licheniformis KJ-9 to cattle manure-sawdust. The thermal stability of the antifungal substance produced by B. licheniformis KJ-9 maintained more than 60% antifungal activity with heat treatment at $100^{\circ}C$ for 10 min, and the optimum pH of antifungal activity of the substance was 7.0. In a pot experiment with red pepper, the antifungal compost increased 1.5~2 times in leaf number and stem and root growth rate compared to those of commercial compost. Also, the diameter of stems increased 1.5-3 times in the antifungal compost treated group. The amount of microbes increased markedly in soil supplemented with antifungal compost compared to the control. In the field experiment for cultivation of garlic and Perilla japonica, the growth of both crops was significantly enhanced in the field treated with antifungal compost as compared to the commercial compost.

Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts (SOD와 APX를 동시에 엽록체에 발현시킨 형질전환 감자 (cv. Superior)의 산화스트레스 내성 증가)

  • Tang, Li;Kwon, Suk-Yoon;Kim, Myoung-Duck;Kim, Jin-Seog;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • Oxidative stress is a major damaging factor for plants exposed to environmental stresses. Previously, we have generated transgenic potato (cv. Superior) plants expressing both CuZnSOD and APX genes in chloroplast under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants) and selected the transgenic potato plant lines with tolerance against methyl viologen (MV)-mediated oxidative stress. When leaf discs of SSA plants were subjected to $3{\mu}M$ methyl viologen (MV), they showed approximately 40% less damage than non-transgenic (NT) plants. SSA plantlets were treated with $0.3{\mu}M$ MV stress, SSA plants also exhibited reduced damage in root growth. When 350 MV was sprayed onto the whole plants, SSA plants showed a significant reduction in visible damage, which was approximately 75% less damage than leaves of NT plants. These plants will be used for further analysis of tolerance to environmental stresses, such as high temperature and salt stress. These results suggest that transgenic potato (cv. Superior) plants would be a useful plant crop for commercial cultivation under unfavorable growth conditions.

Immunolocalization of Wound-Inducible Insoluble Acid Invertases in Pea (Pisum sativum L) (완두콩(Pisum sativum L.) 상처에서 유도되는 불용성 산성 인버타제의 면역조직화)

  • Kim, Donggiun;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6425-6431
    • /
    • 2015
  • Invertase, that hydrolyzes sucrose into glucose and fructose, plays a great role in carbohydrate reallocation between the photosynthetic source tissue and various sink tissues. Invertase also occurs in a variety of isoforms for various functions in plants. Insoluble invertases were extracted only in buffer solutions containing high concentrations of salt. Within these classes, acid invertase has an optimum activity at acidic pH (pH 4-5). Induction of insoluble acid invertase (INAC-INV) in leaf, stem, and root tissues in response to physical wounding has been investigated. To detect the localization of INAC-INV within the plant, immunolocalization has been performed. In this study, the accumulation of INAC-INV was noticeable to reach maximum levels on 72 hr after mechanical injuries. INAC-INV was induced in wounded leaves 3 times more than control leaves. Immunolocalization results showed that INAC-INV accumulated in wall appositions and intercellular spaces. INAC-INV was also localized at sieve cell walls in phloem tissues close to the site of wounding. Taken together, this study suggested that INAC-INV induction upon wounding injuries can play a role on responses to the high energy demand for wound healing process.

Physiological Activities of Hot Water Extract from Ailanthus altissima (가죽나무(Ailanthus altissima) 열수 추출물의 생리활성)

  • Lee, Yang-Suk
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.170-176
    • /
    • 2007
  • In this study, extract of Ailanthus altissimawere prepared using hot water under high pressure. The extract were examined for election donating ability (EDA), superoxide dismuase (SOD)-like activity, nitrite scavenging ability (NSA), xanthine oxidase inhibition levels, and tyrosinase inhibition ability. The EDA, using the 1,1-diphenyl-2-picrylhydrazyl method of root extract was 91.25% at 1.0mg/mL. The SOD-like activity of leaf extract was highest at 49.07% and the NSA was 93.33% at pH 1.2, and 85.40% at pH 3.0. The xanthine oxidase inhibitory levels of extracts of A. altissima roots, stems, and leaves were 92.09 97.44% when the extract were tested at 2.0mg/mL. The highest tyrosinase inhibition levels obtained from loot extract were 67.38% at 2.0mg/mL and 63.97% at 0.1mg/mL.

Spatial Estimation of Forest Species Diversity Index by Applying Spatial Interpolation Method - Based on 1st Forest Health Management data- (공간보간법 적용을 통한 산림 종다양성지수의 공간적 추정 - 제1차 산림의 건강·활력도 조사 자료를 이용하여 -)

  • Lee, Jun-Hee;Ryu, Ji-Eun;Choi, Yu-Young;Chung, Hye-In;Jeon, Seong-Woo;Lim, Jong-Hwan;Choi, Hyung-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2019
  • The 1st Forest Health Management survey was conducted to examine the health of the forests in Korea. However, in order to understand the health of the forests, which account for 63.7% of the total land area in South Korea, it is necessary to comprehensively spatialize the results of the survey beyond the sampling points. In this regard, out of the sample points of the 1st Forest Health Management survey in Gyeongbuk area, 78 spots were selected. For these spots, the species diversity index was selected from the survey sections, and the spatial interpolation method was applied. Inverse distance weighted (IDW), Ordinary Kriging and Ordinary Cokriging were applied as spatial interpolation methods. Ordinary Cokriging was performed by selecting vegetation indices which are highly correlated with species diversity index as a secondary variable. The vegetation indices - Normalized Differential Vegetation Index(NDVI), Leaf Area Index(LAI), Sample Ratio(SR) and Soil Adjusted Vegetation Index(SAVI) - were extracted from Landsat 8 OLI. Verification was performed by the spatial interpolation method with Mean Error(ME) and Root Mean Square Error(RMSE). As a result, Ordinary Cokriging using SR showed the most accurate result with ME value of 0.0000218 and RMSE value of 0.63983. Ordinary Cokriging using SR was proven to be more accurate than Ordinary Kriging, IDW, using one variable. This indicates that the spatial interpolation method using the vegetation indices is more suitable for spatialization of the biodiversity index sample points of 1st Forest Health Management survey.

Effect of Salt Concentration in Soil on the Growth, Yield, Photosynthetic Rate, and Mineral Uptake of Tomato in Protected Cultivation (토양 염류농도가 시설토마토의 생육, 수량, 광합성속도 및 무기양분 흡수에 미치는 영향)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.328-332
    • /
    • 2007
  • This study was conducted to investigate the effects of high concentrations of salts in soil on the growth, yield, quality, photosynthetic rate, and mineral uptake of tomato ('House Momotaro') in pot cultivation. The growth of tomato such as plant height, top plant weight and root weight decreased as the concentrations of salts in soils increased. Yield decreased by 31% and 41% in EC 5.0 and $7.5dS{\cdot}m^{-1}$, respectively compared with the salt concentration of EC $1.5dS{\cdot}m^{-1}$. Yield reduction was caused by low mean weight and number of fruit if at high salt concentration in soil, and affected by low photosynthetic rate and water potential in leaf, The rate of blossom-end rot was highest (16.7%) in EC $7.5dS{\cdot}m^{-1}$ and increased as the concentrations of salts in soils increased. The contents of soluble solids and titratable acids showed a tendency to increase with increasing the concentrations of salts in soils. Photosynthetic rate, water potential and stomatal conductance in leaf decreased as the salt concentration in soil increased. The higher the salt concentration in soil, the lower the mineral uptake such as T-N, P, K, Ca and Mg but, the higher the content of Na.

Light Quality and Photoperiod Affect Growth of Sowthistle (Ixeris dentata Nakai) in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 광질과 광주기에 따른 씀바귀의 생육)

  • Kim, Hye Min;Kang, Jeong Hwa;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • This study was conducted to examine the optimal environmental condition for promoting the growth of sowthistle as affected by light quality and photoperiod in a closed-type plant production system. Seeds were sown in 240-cell plug trays and then germinated for 3 days at a 24-hour photoperiod in a closed-type plant production system with LED lights (R:B:W = 8:1:1). Seedlings were transplanted and grown under 3 types of LED (R:B:W = 8:1:1, R:W = 3:7, or R:B = 8:2) and 4 photoperiods (24/0, 16/8, 8/16, or 4/20 hours) with $230{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ light intensity at a density of $20cm{\times}20 cm$. The experimental design was a randomized complete block design. Plants were cultured for 40 days un der the condition of $21{\pm}2^{\circ}C$ and $70{\pm}10%$ relative humidity after transplanting. Plants were fed with a recycling nutrient solution (pH 7.0 and EC $2.0dS{\cdot}m^{-1}$) contained in a deep floating tank. Fresh weight and dry weight of shoot or root, leaf length, and leaf area were the greatest in the photoperiod of 24/0 (light/dark) with RW LED. The highest number of leaves occurred in the photoperiod of 16/8 (light/dark) with RB LED, while the incidence of tip burn was higher in the photoperiod of 24/0 (light/dark) compared to the other treatments. Chlorophyll value was the highest in the 16/8 (light/dark) photoperiod and there was no significant difference by light quality. Chlorophyll fluorescence was the lowest in the photoperiod of 24/0 (light/dark) compared with other treatments. Therefore, in terms of economic feasibility and productivity for Ixeris dentata Nakai cultivation in a closed-type plant production system, the results obtained suggest that plants grew the best when kept in a photoperiod of 16/8 (light/dark) and light quality of combined LED RW (3:7).

Development of the Trichomes in Floating Leaves of Salvinia Species (생이가래속(Salvinia) 부유엽 모용의 분화발달)

  • Seo, Ae-Ri;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Salvinia is an aquatic plant forming dimorphic leaves that have been modified into floating and submerged leaves. A air of floating leaves plays an important role for the floating and photosynthesis while the submerged leaves, which are lim and long, have the form and function of root. Many aquatic plants develop trichomes in the epidermis but in Salvinia, richomes grow densely in the epidermis of the dimorphic leaves. The present study examined the differentiation pattern of trichomes developing in the floating leaves of S. natans and S. molesta by scanning and transmission electron microscopy. Trichomes developing in the floating leaves of Salvinia showed very different patterns. In S. natans, they were arranged in a V-shape form, having 20${\sim}$25 rows at $18{\sim}25^{\circ}$ on both sides of the lamina divided by the midrib in the floating leaf. In each row, 8${\sim}$10 oval-shaped cells, $200{\sim}290{\mu}m$ in length, were arranged in a spiral fashion. Four trichomes of this form made a trichome unit, but their apical parts were separated from one another and developed into the so-called 'knuckle-crane' type. On the other hand, in S. molesta, trichomes differentiated in a unique pattern quite different from those of S. natans. At the early stage of differentiation, trichomes protruded from the epidermis and then 4${\sim}$6 cylindrical cells grew $400{\sim}600{\mu}m$ long and the four trichomes formed as an unit. The four grouped trichomes were interconnected through their apex and developed in the 'egg-beater' type. Then $300{\sim}600{\mu}m$ long multi-cellular stalk cells grew and protruded out of the epidermal surface from the basal part of the trichomes. Such a structural characteristic of trichomes is considered to play a very important role along with the aerenchyma tissue in the leaf mesophyll tissue for the floating of Salvinia on the water surface.

Effects of Rice Hull Cover for Seed Germination, Types of Tray and Soil, Shading Conditions for Seedling Growth of Codonopsis pilosuala (왕겨 피복에 따른 만삼 종자발아와 육묘를 위한 트레이, 토양 및 차광처리 효과)

  • Lee, Su Gwang;Ku, Ja Jung;Cho, Won Woo;Kang, Ho Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.66-73
    • /
    • 2013
  • This study was conducted to determine the effects of rice hull cover on seed germination and tray types, soil types, shading conditions for seedling growth of Codonopsis pilosuala. We also examined the feasibility of cultivation of small seedlings transplanted in the Gyeonggi-do area for a month. Under control condition, the seed germination was 8% whereas it dramatically increased to 78% under rice hull cover treatment. Under the different conditions (tray types, soil types, and shading conditions), young seedlings showed the best quality without shading in TKS soil of 50 plug cell tray, with the growth characteristics of plant height (11.9 cm), number of leaves (71), leaf width (3.1 cm), leaf length (2.6 cm), and root length (14.3 cm). Seedling quality was the best without any shading in TKS+perlite, with the physiological characteristics of evaporation (3.9 $mmol{\cdot}m^{-2}s^{-1}$), carbon assimilation (9.1 ${\mu}mol{\cdot}m^{-2}s^{-1}$), and water use efficiency (2.2 ${\mu}mol{\cdot}m^{-2}s^{-1}$). Considering the economical, morphological, physiological and survival rate of the seedlings, it was an ideal method for transplanting seedlings in the field after they have been grown for 30-45 days in TKS and TKS+perlite of 200 plug cell tray in 0% or 30% shaded conditions. As the results of 5 months examination on the possibility to cultivate Codonopsis pilosuala in the Gyeonggi-do area, 88% to 96% of survival rate was observed with normal induced flowers. Therefore, cultivation of Codonopsis pilosuala was possible in the Gyeonggi-do area. While there were symptoms of etiolation and wilting under no shading condition, they did not appear in 30% and 70% shading conditions. Therefore, cultivation of Codonopsis pilosuala is considered to be necessary 30% or 70% shading.

In vitro propagation of a rare and endangered species, Echinosophora koreensis Nakai, by axillary bud culture (희귀 및 멸종위기 수종 개느삼의 액아배양을 통한 기내번식)

  • Moon, Heung-Kyu;Kim, Yong-Wook
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.229-234
    • /
    • 2008
  • An efficient micropropagation was established by using axillary bud explants from two-year-old tree(Echinosphorea koreensis Nakai), which has been known as a rare and endangered species. Among various basal media tested, DKW medium was shown to be the best for axillary shoot elongation. The addition of both BA and TDZ to the medium induced 6 to 10 shoots per explant during eight weeks of culture, without showing any abnormal morphology at the shoot proliferation stage. However, high concentration of TDZ(>0.05 mg/L) appeared to cause hyperhydration on either leaf or shoot at the later developmental stage. Approximately 20% of shoots produced roots by the addition of 1.0 mg/L NAA but not by IBA($0.2{\sim}1.0$ mg/L). Ex vitro micro-cuttings were better source for root induction; up to 58.6% of the micro-cuttings rooted when 100 mg/L IBA was applied to the soil(vermiculite). More than 90% of plantlets with roots were successfully acclimatized and grew normally in the field. Therefore, we suggest that this endangered tree species can be effectively micropropagated by axillary bud culture system developed in this study.