Development of the Trichomes in Floating Leaves of Salvinia Species

생이가래속(Salvinia) 부유엽 모용의 분화발달

  • Seo, Ae-Ri (Biology Department, College of Natural Sciences, Keimyung University) ;
  • Kim, In-Sun (Biology Department, College of Natural Sciences, Keimyung University)
  • 서애리 (계명대학교 교육대학원 공통과학교육) ;
  • 김인선 (계명대학교 교육대학원 공통과학교육)
  • Published : 2008.06.30

Abstract

Salvinia is an aquatic plant forming dimorphic leaves that have been modified into floating and submerged leaves. A air of floating leaves plays an important role for the floating and photosynthesis while the submerged leaves, which are lim and long, have the form and function of root. Many aquatic plants develop trichomes in the epidermis but in Salvinia, richomes grow densely in the epidermis of the dimorphic leaves. The present study examined the differentiation pattern of trichomes developing in the floating leaves of S. natans and S. molesta by scanning and transmission electron microscopy. Trichomes developing in the floating leaves of Salvinia showed very different patterns. In S. natans, they were arranged in a V-shape form, having 20${\sim}$25 rows at $18{\sim}25^{\circ}$ on both sides of the lamina divided by the midrib in the floating leaf. In each row, 8${\sim}$10 oval-shaped cells, $200{\sim}290{\mu}m$ in length, were arranged in a spiral fashion. Four trichomes of this form made a trichome unit, but their apical parts were separated from one another and developed into the so-called 'knuckle-crane' type. On the other hand, in S. molesta, trichomes differentiated in a unique pattern quite different from those of S. natans. At the early stage of differentiation, trichomes protruded from the epidermis and then 4${\sim}$6 cylindrical cells grew $400{\sim}600{\mu}m$ long and the four trichomes formed as an unit. The four grouped trichomes were interconnected through their apex and developed in the 'egg-beater' type. Then $300{\sim}600{\mu}m$ long multi-cellular stalk cells grew and protruded out of the epidermal surface from the basal part of the trichomes. Such a structural characteristic of trichomes is considered to play a very important role along with the aerenchyma tissue in the leaf mesophyll tissue for the floating of Salvinia on the water surface.

생이가래는 수생 양치식물로 한 쌍의 부유엽은 식물체 부유 및 광합성의 기능을 하며, 수중의 침수엽은 가늘고 길게 세분되어 뿌리의 형태 및 기능을 수행한다. 많은 수생식물에서는 표피 조직에 엽침이나 모용 등의 이형세포를 형성하는데, 생이가래는 모용이 엽육 표피조직에 밀생한다. 이에 본 연구에서는 생이가래속 Salvinia natans 및 S. molesta 2종의 부유엽 상피조직에 발달하는 모용의 분화발달 양상을 주사 및 투과전자현미경으로 연구 하고자 한다. 연구된 2종의 생이가래 부유엽 상피조직에 발달하는 모용은 매우 다른 양상을 나타낸다. S. natans의 모용은 중맥을 중심으로 엽신 양면에 일정하게 20${\sim}$25열로 발달한다. 각각의 열에는 8${\sim}$10개 세포로 구성된 $200{\sim}290{\mu}m$ 크기의 타원형 세포들이 나선 형상으로 배열된다. 이들 모용 4개가 모여 하나의 단위체를 이루 지만 정단부위가 융합되지 않는 'knuckle-crane' 형태로 발달한다. 반면, S. molesta에서는 독특한 유형의 모용으로 분화한다. 분화초기 부유엽 상피조직에서 모용들이 돌기형태로 돌출되고 8${\sim}$10개의 원통형 세포들이 $400{\sim}600{\mu}m$으로 신장한 후 이들 모용4개가 하나의 단위를 이룬다. 이들 단위체내 각 모용들의 정단부위가 융합되어 'egg-beater' 형태로 발달하기 시작한다. 이후 $300{\sim}600{\mu}m$의 다세포성 병세포들이 모용 기저부위에서 상피표면 위로 신장하여 돌출한다. 성숙한 'egg-beater' 형태의 모용은 0.6${\sim}$1.2mm로 발달하고 'knuckle-crane' 형태에 비해 3${\sim}$4배 길게 신장한다. 연구된 생이가래 2종 모용세포 내 액포는 분화초기에는 세포용적의 극히 일부를 차지하나 분화후기에는 세포용적의 대부분을 차지하여 세포질의 밀도를 매우 낮게 하는 특징을 나타낸다. 이와 같이 생이가래속 식물체내 모용의 구조적 특성은 생이가래가 수중에서 부유기능을 수행하는 데 있어 엽육조직 내통기조직과 함께 매우 중요한 역할을 수행하는 것으로 추정되고 있다.

Keywords

References

  1. Andrew SB: Ferns of Queens Land. Queens land department of primary industries, pp. 305-306, 1990
  2. Barreto R, Charudattan R, Pomella A, Hanada R: Biological control of neotropical aquatic weeds with fungi. Crop Protection 19 : 697-703, 2000 https://doi.org/10.1016/S0261-2194(00)00093-4
  3. Choi HG: Monograph of vascular hydrophytes in Korea. MS Thesis, Seoul University, pp. 1-9, 1985
  4. Coelho FF, Lopes FS, Sperber CF: Density-dependent morphological plasticity in Salvinia auriculata Aublet. Aquat Bot 66 : 273-280, 2000 https://doi.org/10.1016/S0304-3770(99)00084-4
  5. Coelho FF, Lopes FS, Sperber CF: Persistence strategy of Salvinia auriculata Aublet in temporary ponds of Southern Pantanal. Brasil Aquat Bot 81 : 343-352, 2005 https://doi.org/10.1016/j.aquabot.2005.02.001
  6. Croxdale JG: Salvinia leaves. I. Origin and early differentiation of floating and submerged leaves. Can J Bot 56 : 1982-1991, 1978 https://doi.org/10.1139/b78-237
  7. Croxdale JG: Salvinia leaves. II. Morphogenesis of the floating leaf. Can J Bot 57 : 1951-1959, 1979 https://doi.org/10.1139/b79-245
  8. Fahn A: Plant Anatomy. 4th ed. Pergamon Press, Oxford, pp. 57-74, 1990
  9. Gardner JL, Al-Hamdani SH: Interactive effects of aluminum and humic substances on Salvinia. J Aquat Plant Manage 35 : 30-34, 1997
  10. Glover BJ, Martin C: Specification of epidermal cell morphology. In: Hallahan DL, Gray JC, Callow JA, eds, Advances in Botanical Research, pp. 193-218, Academic Press, San Diego, 2000
  11. Goncz AM, Sencic L: Metolachlor and 2,4-dichlorophenoxy acetic acid sensitivity of Salvinia natans. Bull Environ Contamin Toxicol 53 : 852-855, 1994 https://doi.org/10.1007/BF00196214
  12. Gupta M, Devi S: Cadmium sensitivity inducing structural responses in Salvinia molesta Mitchell. Bull Contamin Toxicol 49 : 436-443, 1992 https://doi.org/10.1007/BF01239649
  13. Ji SY: Structural differntiation of heterophylly in Salvinia natans (L.) ALL. MS Thesis. Keimyung University, pp. 1-20, 2002
  14. Julien MH, Bourne AS: Compensatory branching and changes in nitrogen content in the aquatic weed Salvinia molesta in response to disbudding. Oecologia 70 : 250-257, 1986 https://doi.org/10.1007/BF00379248
  15. Jung J: Plant Morphology. Hyungseol Publishing, Seoul, pp. 182-235, 1992
  16. Kim IS, Ji SY: Structural features of various trichomes developed in Salvinia natans. Kor J Electron Microsc 32 : 319-327, 2002
  17. Ko KS, Jeon ES: Fern-allies and seed-bearing plants of Korea. Iljinsa, Seoul, pp. 17-18, 70, 2005
  18. Lee KB: Plant Morphology. Life Science, Seoul, pp. 167-168, 2004
  19. Lee S, Kim IS: Structural features of various trichomes in Vitex negundo during development. Kor J Electron Microsc 36 : 35-45, 2006
  20. Lee ST, Lee YS: Modern Systematic Botany. Woosung Publishing, Seoul, pp. 227-230, 245-246, 1991
  21. Lee YS: Plant Morphology. Woosung Publishing, Seoul, pp. 194-198, 1997
  22. Lemon GD, Posluszny U: Shoot morphology and organogenesis of the aquatic floating fern Salvinia molesta. D.S. Mitchell, examined with the aid of laser scanning confocal microscopy. Intl J Plant Sci 158 : 693-703, 1997 https://doi.org/10.1086/297481
  23. Madeira PT, Jacono CC, Tipping P, Van TK, Center TD: A genetic survey of Salvinia minima in the southern United States. Aquat Bot 76 : 127-139, 2003 https://doi.org/10.1016/S0304-3770(03)00036-6
  24. Maine MA, Duarte MV, Sune NL: Cadmium uptake by floating macrophytes. Water Res 35 : 2629-2634, 2001 https://doi.org/10.1016/S0043-1354(00)00557-1
  25. Oliver JD: A review of the biology of giant Salvinia (Salvinia molesta Mitchell). J Aquat Plant Manage 31 : 227-231, 1993
  26. Petrucio MM, Esteves FA: Influence of photoperiod on the uptake of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata. Revista Brasileira de Biologia 60 : 373-379, 2000 https://doi.org/10.1590/S0034-71082000000300002
  27. Room PM: Effects of temperature, nutrients and a beetle on branch architecture of the floating weed Salvinia molesta and simulations of biological control. J Ecol 76 : 826-848, 1988 https://doi.org/10.2307/2260576
  28. Room PM: Ecology of a simple plant-herbivore system: biological control of Salvinia. Trends Ecol 5 : 74-79, 1990 https://doi.org/10.1016/0169-5347(90)90234-5
  29. Sculthorpe CD: The Biology of Aquatic Vascular Plant. Edward Arnold Ltd, pp. 176-204, 1967
  30. Sen AK, Mondal NG: Removal and uptake of copper (II) by Salvinia natans from waste water. Wat Air Soil Poll 49 : 1-6, 1990 https://doi.org/10.1007/BF00279505
  31. Van der Heide T, Roijackers RMM, van Nes EH, Peeters ETHM: A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquat Bot 84 : 171-175, 2006 https://doi.org/10.1016/j.aquabot.2005.09.004
  32. White RA, Turner MD: Anatomy and development of the fern sporophyte. Bot Rev 61 : 281-305, 1995 https://doi.org/10.1007/BF02912620