• Title/Summary/Keyword: rolling mill

Search Result 335, Processing Time 0.029 seconds

Development of a Finishing-Mill Set Up Program for Calculating Pass Schedule In Mini Process (미니밀 마무리압연기의 Pass Schedule 설정 프로그램 개발)

  • 이호국;박해두;최갑춘
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.101-109
    • /
    • 1996
  • Mini-mill process which is one of the new steel -marking technologies to be able to produce the hot rolled coils by thin slab caster of ISP(In-Line Strip Production) type, will be completed in the Kwangyang Steel Works of POSCO in August, 1996, SEt-Up Model of finishing mill which consists of 5 stands is the most basic and essential in mini-mill plant. Therefore, the simulation program of Finishing-mill Set-Up model were developed in this research , using new temeprature prediction model, roll gap model and rolling physical model. Using the developed FSU program , pass schedules to produce the strips with target strip thickness of 1.8mm, 2.0mm, 2.3mm, 2.7mm an d3.0mm were also determined respectively.

  • PDF

Development of Texture in Aluminum 1100 Sheets during Asymmetrical Rolling. (비대칭 압연시 알루미늄 1100 판재에서 집합조직 형성)

  • 지영규;정효태;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.105-108
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

  • PDF

Mathematical Model for Cold Rolling and Temper Rolling Process of Thin Steel Strip

  • Lee, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1296-1302
    • /
    • 2002
  • A mathematical model for cold rolling and temper rolling process of thin steel strip has been developed using the influence function method. By solving the equations describing roll gap phenomena in a unique procedure and considering more influence factors, the model offers significant improvements in accuracy, robustness and generality of the solution for the thin strip cold and temper rolling conditions. The relationship between the shape of the roll profile and the roll force is also discussed. Calculation results show that any change increasing the roll force may result in or enlarge the central flat region in the deformation zone. Applied to the temper rolling process, the model can well predict not only the rolling load but also the large forward slip. Therefore, the measured forward slip, together with the measured roll force, was used to calibrate the model. The model was installed in tile setup computer of a temper rolling mill to make parallel setup calculations. The calculation results show good agreement with the measured data and the validity and precision of the model are proven.

Development of Deformation Texture in Aluminum Sheets during Asymmetrical Rolling with a Roll Speed Ratio of 1.5/l.0 (롤속도 비 1.5/l.0 비대칭 압연 시 알루미늄 판재에서 변형집합조직의 형성)

  • 지영규;정효태;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed with a roll speed ratio of 1.5/l.0. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

Condition Monitoring and Diagnosis of a Hot Strip Roughing Mill Using an Autoencoder (오토인코더를 이용한 열간 조압연설비 상태모니터링과 진단)

  • Seo, Myung Kyo;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.75-86
    • /
    • 2019
  • Purpose: It is essential for the steel industry to produce steel products without unexpected downtime to reduce costs and produce high quality products. A hot strip rolling mill consists of many mechanical and electrical units. In condition monitoring and diagnosis, various units could fail for unknown reasons. Methods: In this study, we propose an effective method to detect units with abnormal status early to minimize system downtime. The early warning problem with various units was first defined. An autoencoder was modeled to detect abnormal states. An application of the proposed method was also implemented in a simulated field-data analysis. Results: We can compare images of original data and reconstructed images, as well as visually identify differences between original and reconstruction images. We confirmed that normal and abnormal states can be distinguished by reconstruction error of autoencoder. Experimental results show the possibility of prediction due to the increase of reconstruction error from just before equipment failure. Conclusion: In this paper, hot strip roughing mill monitoring method using autoencoder is proposed and experiments are performed to study the benefit of the autoencoder.