Figure 1. A Schematic illustration of hot strip rolling mill process
Figure 2. Illustration and image(left) and picture of a roughing mill(right)
Figure 3. Drive and non-drive side vibration(Top : Drive side, Bottom : Non Drive side)
Figure 4. Scatter plots of evaluation data set(Normal: solid dots, Abnormal: empty dots)
Figure 5. Data structures
Figure 6. Autoencoder(right) and stacked autoencoder(left) structures
Figure 7. Reconstruction error trend of autoencoder model
Figure 8. Reconstruction error plot
Figure 9. Original and reconstruction images
Table 1. Hyper-parameter for autoencoder modeling
Table 2. Stacked autoencoder modeling
References
- Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. 2017. "Unsupervised real-time anomaly detection for streaming data." Neurocomputing 262(1):134-147. https://doi.org/10.1016/j.neucom.2017.04.070
- Choi. J. H. 2013. "Introduction of Prognostics and Health Management." Journal of the Korean Society of Mechanical Engineers 53(7):26-34.
- Devika, U.K., and Sunny, D. 2014. "Comparison Study among Various Anomaly Detection Techniques." Journal of Research in Computer and Communication Technology 3(3):121-124.
- Farina, M., Osto. E., Perizzato, A., Piroddi, L., and Scattolini, R. 2015. "Fault Detection and Isolation of Bearings in a Drive Reducer of a Hot Steel Rolling Mill." Control Engineering Practice 39:35-44. https://doi.org/10.1016/j.conengprac.2015.02.001
- Hansson, K., Yella, S., Dougherty, M., and Fleyeh, H. 2016. "Machine Learning Algorithms in Heavy Process Manufacturing." American Journal of Intelligent Systems 6(1):1-13.
- Hu, Y., Palme, T., and Fink, O. 2016. "Deep Health Indicator Extraction: A Method Based on Auto-encoders and Extreme Learning Machines." Annual Conference of the Prognostics and Health Management Society:1-7.
- Kumar, S., Chow, W. S., and Pecht, M. 2010. "Approach to Fault Identification for Electronic Products Using Mahalanobis Distance." IEEE Transactions on Instrumentation and Measurement 59(8):20552064.
- Lee, S. H., and Yun, B. D. 2015. "Industry 4.0 and Direction of Failure Prediction and Health Management Technology(PHM)." Journal of the Korean Society for Noise and Vibration Engineering 25(1):22-28.
- Omar, S., Ngadi, A., and Jebur, H. H. 2013. "Machine Learning Techniques for Anomaly Detection : An overview." International Journal of Computer Applications 79(2):33-41. https://doi.org/10.5120/13715-1478
- Sarkar, S., Reddy, K. K., Giering, M., and Gurvich, M. R. 2016. "Deep Learning for Structural Health Monitoring: A damage characterization application." Annual Conference of the Prognostics and Health Management Society:176-182.
- Seo, M. K., and Yun, W. Y. 2017. "Clustering-based Monitoring and Fault detection in Hot Strip Roughing Mill." Journal of the Korean Society for Quality Management 45(1):25-37. https://doi.org/10.7469/JKSQM.2017.45.1.025
- Verdier, G., and Ferreira, A. 2011. "Adaptive Mahalanobis Distance and k-Nearest Neighbor Rule for Fault Detection in Semiconductor Manufacturing." IEEE Transactions Semiconductor Manufacturing 24(1):59-68. https://doi.org/10.1109/TSM.2010.2065531
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. A. 2010. "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion." The Journal of Machine Learning Research 11(3):3371-3408.
- Yacout, S. 2010. "Fault Detection and Diagnosis for Condition Based Maintenance Using the Logical Analysis of Data." Computers and Industrial Engineering(CIE) 2010 40th International Conference:1-6.
- Zhou, Y., Li, H.M., Huang, D., and Gao, Z. 2015. "Data Driven Injection Molding Process Monitoring Using Sparse Autoencoder Technique." IEEE International Conference on Advanced Intelligent Mechatronics(AIM):524-528.
- Zhu, H. J., Ting, R., Wang, X. Q., You, Z., and Fang, H. 2015. "Fault Diagnosis of Hydraulic Pump Based on Stacked Autoencoders." IEEE 12th International Conference on Electronic Measurement & Instruments:58-62.