• Title/Summary/Keyword: roller bearing

Search Result 122, Processing Time 0.033 seconds

A Computational Analysis of Air Entrainment with a Nip Roller

  • Lee, Jae-Yong;Chang, Young-Bae;Shelton, John J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2002.11a
    • /
    • pp.81-90
    • /
    • 2002
  • Air entrainment of a winding roll with a nip roller was studied numerically. The amount of air entrainment between two rotating rollers was obtained by solving lubrication equation, Reynolds equation, which neglect the existence of a web. However, the numerical model of this study included the web existence, therefore it considered the two lubricating air films between a winding roll and a web and also between a nip roller and the web. The pressure profiles and gap profiles of the two films were obtained by solving lubrication equation for the two air films and force balance equation of the web. Ballooning phenomenon was examined in terms of nip force, wrap angle, web stiffness, web speed, and web tension. This ballooning phenomenon caused by the back flow of the air film blocked by the nip roller. Air entrainment of the two numerical models was compared.

  • PDF

Development of a Planetary Roller Type Traction Drive (유성 로울러형 트랙션 드라이브 개발)

  • 박태조;하해용;문호근;정현기;독고욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.360-366
    • /
    • 2001
  • This paper show the designing, manufacturing and performance test procedure of a high speed, fixed ratio planetary roller type traction drive as a speed reducer. The arrangement and size design for sun roller, planetary rollers and ring roller are carried out and a proper pre-load mechanism are adopted. To improve transmitting power capacity and endurance limit, nitro-carburized bearing steel and a synthetic traction oil are used. The manufactured and assembled traction drive operated successfully under unloaded conditions. Further tests for various load and speed conditions are executing now to improve the performance of the traction drive.

  • PDF

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

Study on Fuel Lubrication Performance of a High Speed Rolling Element Bearing (소형 고속 구름베어링의 연료윤활 특성 연구)

  • Kim, Ki-Tae;Kim, Sung-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.424-426
    • /
    • 2008
  • A parametric study was carried out to find the fuel lubrication performance of high speed small rolling element bearings. Both MIL-PRF-7808 turbine oil and JP-8 aircraft fuel were used as the lubricant to compare the operational characteristics. 17 mm inner diameter deep groove ball bearing and 20 mm cylindrical roller bearing were used. A high speed bearing test rig was developed and the testing was done with varying applied load, cooling air temperature, lubricant flow rate, and speed. Fuel caused more cage wear than oil for ball bearing with increasing axial load and rotational speed. The bearing temperature using fuel was lower than that using oil, and this seems to be the result of the high cooling capacity of fuel. According to various tests, the fuel lubrication is applicable for the lubrication on the main shaft bearings of expendable small gas turbines.

  • PDF

Modeling of Displacement of Linear Roller Bearing Subjected to External Forces Considering LM Block Deformation (외부하중을 받는 선형 롤러베어링의 LM 블록 변형을 고려한 변위 모델링)

  • Kwon, Sun-Woong;Tong, Van-Canh;Hong, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1077-1085
    • /
    • 2016
  • Linear roller bearing (LRB) is an important mechanical element that is widely used in precise positioning systems that are subjected to large loads. This paper presents a new model for estimating the displacement of an LRB subjected to external forces. For this purpose, assuming that the linear motion block (LM block) is rigid, the equilibrium conditions for the LRB were obtained by solving the equilibrium equations of the rollers and the rigid LM block using the iterative Newton-Raphson method. The contact loads between the rollers and raceways were determined considering the profiled rollers. Then, the structural deformations of the LM block, subjected to the contact loads from the rigid LM block model, were computed using a finite element model for the LM block. The displacements of the LRB were then determined by superposition of the rigid LM block displacements on the induced displacements due to the structural deformations of the LM block. The proposed method was verified through comparison with a program by the bearing manufacturer.

P-S Characteristics for End-bearing Pile in Granular Material (사질토 지반에서 선단지지말뚝의 P-S 특성)

  • Lee Yong Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • This paper investigates P-S (load-settlement) relationship for the end-bearing Pile in granular material using the CRISP FE Program with the laboratory 2D model pile load test. In order to simulate the effect of end-bearing pile problem in the FEA, the author adopts several forms of slip element around the pile length and the pile tip. Through this study it was found that e degree of non-associated Plastic flow rule incoporated into the Mohr-Coulomb model for the end-bearing pile with the slip elements was a dominant factor in terms of numerical solution convergence. In contrast, the roller boundary used along the pile shaft showed a smooth convergence with respect to the degree of non-associated plastic flow rule.

Endurance Life Estimation of Taper Bearing Units (테이퍼 베어링 유닛의 내구수명 예측)

  • Ahn, Tae-Kil;Lee, Sang-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.160-164
    • /
    • 2007
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, bearing geometry, internal clearance and so on. Generally, a tapered roller bearing gives longer endurance life than that of an equivalent size ball bearing. Consequently, the application of taper bearing units will be increased for more compact design and extended warranty. In this paper, we derive the relation between loads and deformations of a taper bearing unit. On the basis of that, we calculate the endurance life of the taper bearing unit considering initial axial clearance.

Analysis on Characteristics of Drawing Plastic Deformation for Rectangular Monel Material with Special Alloy and Rollers (특수합금 사각봉 모넬 소재의 인발 소성변형 및 롤러 특성 해석)

  • Lee, Young-Sik;Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.961-968
    • /
    • 2022
  • Hydrogen embrittlement leads to the damages in bolts, nut, especially, high pressure valves, in the semiconductor facilities, hydrogen vehicles, hydrogen stations and so on. Monel material has higher strength than SUS material. Therefore, even though Monel material with special alloy is usually used to prevent the hydrogen embrittlement, it needs powerful drawing system to manufacture the rectangular or hexagonal bar using circular bar. The purpose of this study is to investigate the characteristics of plastic deformation of Monel material and 2 rollers of rolling unit in plastic limit through numerical analysis. As the results, it was predicted that, based on mean stress, as the rolling step was increased, the rolling force of rolling unit was decreased. In addition, the heat treatment for Monel material was needed because of residual stress due to plastic deformation. As for rollers, the roller was safe about 1.86 times compared with that of ultimate strength. In this study, as the roller 2 showed larger stress than roller 1, thus, roller 2 should be designed carefully to guarantee the safety. Further it was confirmed that the reaction force of roller could be helpful in bearing design.