• Title/Summary/Keyword: rock-soil

Search Result 1,074, Processing Time 0.031 seconds

임기광산 폐석 및 퇴적물의 산성배수발생 능력 평가

  • 정영욱;임길재;지상우;민정식;최용석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.390-393
    • /
    • 2004
  • This study was carried out to evaluate the acid producing potential of geological materials such as pit wall, waste rock and stream sediments near the abandoned Imgi mine. The 17 samples used in this study were collected and then treated by static test such as Acid Base Accounting and etc. Samples of pit wall and waste rocks with high S content display a NAGpH values below 4.5 and net acid potential. Therefore some cost effective measures such as capping and groudwater flow barriers, will be required to reduce the impacts of ARD from the waste rock impoundment and the pit wall on near the stream.

  • PDF

A Comparative Study on Borehole Seismic Test Methods for Site Classification

  • Jung, Jong-Suk;Sim, Youngjong;Park, Jong-Bae;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.389-397
    • /
    • 2012
  • In this study, crosshole seismic test, donwhole seismic test, SPT uphole test, and suspension PS logging (SPS logging) were conducted and the shear wave velocities of these tests were compared. The test demonstrated the following result: Downhole tests showed similar results compared to those of crosshole tests, which is known to be relatively accurate. SPS logging showed reliable results in the case of no casing, i.e. in the rock mass, while, in the case of soil ground, its values were lower or higher than those of other tests. SPT-uphole tests showed similar results in the soil ground and upper area of rock mass compared to other methods. However, reliable results could not be obtained from these tests because SPT sampler could not penetrate into the rock mass for the tests.

Study of Influence Factors for Prediction of Ground Subsidence Risk

  • Park, Jin Young;Jang, Eugene;Ihm, Myeong Hyeok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This Analyzed case study of measuring displacement, implemented laboratory investigation, and in-situ testing in order to interpret ground subsidence risk rating by excavation work. Since geological features of each country are different, it is necessary to objectify or classify quantitatively ground subsidence risk evaluation in accordance with Korean ground character. Induced main factor that could be evaluated and used to predicted ground subsidence risk through literature investigation and analysis study on research trend related to the ground subsidence. Major factors of ground subsidence might be classified by geological features as overburden, boundary surface of ground, soil, rock and water. These factors affect each other differently in accordance with type of ground that's classified soil, rock, or complex. Then rock could be classified including limestone element or not, also in case of the latter it might be classified whether brittle shear zone or not.

A Case Study on Reinforcement of Cut Slope with Fault Zone (단층대가 발달한 사면의 보강대책에 관한 사례 연구)

  • Kim, Jeong-Ho;Park, Choon-Sik;Kim, Tae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.930-937
    • /
    • 2008
  • From the result of precise field investigation and stability analysis for the cut slope, following results were acquired. 1. The cause of the collapse of cut slope came from circle sliding collapse by fault zone which remained inner weathering zone. 2. The existing destructed soil and rock can be removed by reinforcement. And to prevent the additional destruction, it is judged that applying the method after relaxing the slope would be reasonable. 3. To make cut slope stable, soft rock layer should be done cutting 1:1.5 and 1:2.0 ~ 1:2.5 for weathered rock and soil layer. 4. Heavy water leakage section should be applied horizontal drain method so that water pressure should not act to the cut slope.

  • PDF

Case Studies for Temporary Soil Support Walls of Subway No.9 (지하철 9호선 흙막이 구조물의 설계 사례 분석)

  • 주재건;김영진;김경태
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.96-103
    • /
    • 2002
  • In this study, design concepts of Seoul Subway Construction (901∼914) are reviewed in relation to the cases for temporary soil support wall systems which are revealed in highly developed design competitions such as Turnkey and Alternative based on. Especially soil and rock properties, various design schemes for dealing with soil and water pressures, new technology adopted etc are discussed very profoundly and broadly for the better understanding and additional clues for constructing new design technologies.

  • PDF

A Study on the Moisture Adsorption and Permeability Characteristics of Weathered Granite Soils (화강토의 풍화도가 수분흡착 및 침투성에 미치는 영향)

  • 이대훈;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.81-89
    • /
    • 1984
  • To examine the moisture adsorption and permeability characteristics, weathered granite soils of different degrees of weathering, cultivated upland soils and sands of Han-river were sampled. The results are as follows: 1. In case that the mother rock was same, the pF values under same moisture content decreased according as the grain size of soil became finer by the weathering process. 2. In case that the mother rock was different, the pF value varied by the behavior of clay minerals, and the cultivated upland soils showed more sensitive reaction than sands and fresh granite soils. 3. The pF value changed by the difference of primary moisture content and also influenced by soil structure, testing method and etc. 4. The pF value and compaction curve had close relation, however under same moisture content, the pF value decreased by the increment of density. 5. The permeability depend on the available void ratio between the soil particles according to the degree of weathering, and the pF value of available void water between the soil particles which related directly to permeability was about 3.3 except the void water holded in the soil particles. 6. As the above, the pF value and permeability were differentiated by degree of weathering, primary moisture content, density and etc. Therefore it is considered unreasonable to define uniformly by soil texture.

  • PDF

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

A Estimation of Soil Conversion Factor Using Digital Photogrammetry and 3D Laser Scanner (디지털사진측량 및 3D 레이저스캐너를 이용한 토랑환산계수의 산정)

  • Lee Jae-Kee;Jung Sung-Heuk;Lee Kye-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.227-234
    • /
    • 2006
  • Ministry of construction & transportation is operating for the soil and rock information system and is considered to accurate application of soil conversion factor that is essentially necessary for accurate calculation of earth volume. Since the balance of cutting earth in public work, the plan of spoil bank or borrow pit are directly related to construction costs, accurate calculation of earth volume and efficient scheme of haul are important. As such, this study has provided methods that can acquire information that is more rapid, applicable to job sites, and trustworthy by comparing resultant values of photogrammetry, laser scanning, or inside job site experimentations, and calculated soil conversion factor by applying photogrammetry and laser scanning methods for hard rock that has difficulty in calculating soil conversion factor. The study can provide alternatives that can resolve the problems of unbalanced earth volume that may arise in applying to plans the earth conversion factor that relies on planning books and experience without considering the characteristics of job site earth, and can establish its relevancy by calculating soil conversion factor for hard rock that has relative difficulties in doing inside or job site testing.

Application of hydraulic cylinder testing to determine the geotechnical properties of earth-filled dams

  • Rodriguez, Roman F.;Nicieza, Celestino G.;Gayarre, Fernando L.;Lopez, Francisco L. Ramos
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.483-498
    • /
    • 2015
  • This article describes a new in-situ load test called the Hydraulic Cylinder Test (HCT) and its application to determine the geotechnical properties of soil-rock mixtures. The main advantages of the test are its easy implementation, speed of execution and low-cost. This article provides a detailed description of the equipment and the test procedure, and examines a case study of its application to determine the geotechnical properties of an earth-filled dam for a tailings pond. The containment dams of the ponds are made from blocks of gypsum and marl, obtained from the excavation of the ponds, mixed in a matrix of sands and clays. The size of the rocks varies between 1 and 30 cm. The HCT is particularly useful for determining the geotechnical properties of this type of soil-rock mixture. Nine HCTs were carried out to determine its strength (c, ${\phi}$) and deformation (B, G) properties. The results obtained were validated using the Bim strength criterion, recently proposed, and some pressure meter tests carried out beforehand. The properties obtained are used to analyze the stability of the dam using computer simulations and a modification to its design is proposed.

A Study on the Status Analysis of Cut Slope in Gyeongnam Region (경남지역 절취사면의 현황분석에 관한 연구)

  • Park, Jin-Kyu;Park, Choon-Sik;Jang, Jeong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.862-869
    • /
    • 2005
  • This study examined 233 cut slopes in Gyeongnam region; evaluated hazards and slope conditions involved in the slope; and determined the priority order for reinforcement. The conclusions are summarized in the following. (1) The slopes that need reinforcement or maintenance are 153, accounting for 65.6% of the entire slopes. Slopes with a length of $0{\sim}200m$ account for 70.9%; slopes with a height of $10{\sim}20m$ account for over 50%. (2) Slopes with slope of more than 1:0.5 account for 70.9% of the entire slopes. The steepness of the slope is owing to more rock slopes than soil slopes. (3) The percentages of rock slopes, soil slopes, complex slopes mixed with rocks and soil, and slopes comprised of igneous rocks are 54.4%, 24.9%, 20.7%, and 54.1%, respectively. (4) In the rock area occurred cave-in, plain failure, wedge failure, and overturning failure, in order. Slopes with volcanic rocks are the most unstable, while sedimentary rocks and metamorphic rocks are relatively stable. (5) When the slope height is over 20m, low grade slopes are more than 80%; leading to the conclusion that the higher the slope height is, the more unstable the slope is.

  • PDF