• Title/Summary/Keyword: rock tunnel

Search Result 2,168, Processing Time 0.032 seconds

Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage (열에너지 저장용 암반 공동의 최적 종횡비 결정을 위한 역학적 안정성 해석)

  • Park, Dohyun;Ryu, Dongwoo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • It is generally well known that the stratification of thermal energy in heat stores can be improved by increasing the aspect ratio (the height-to-width ratio) of the stores. Accordingly, it will be desirable to apply a high aspect ratio so as to demonstrate the good thermal performance of heat stores. However, as the aspect ratio of a store increases, the height of the store become larger compared to its width, which may be unfavorable for the structural stability of the store. Therefore, to determine an optimum aspect ratio of heat stores, a quantitative mechanical stability assessment should be performed in addition to thermal performance evaluations. In the present study, we numerically investigated the mechanical stability of silo-shaped rock caverns for underground thermal energy storage at different aspect ratios. The applied aspect ratios ranged from 1 to 6 and the mechanical stability was examined based on factor of safety using a shear strength reduction method. The results from the present study showed that the factor of safety of rock caverns tended to decrease with the increase in aspect ratio and the stress ratio of the surrounding rock mass was influential to the stability of the caverns. In addition, the numerical results demonstrated that under the same conditions of rock mass properties and aspect ratio, mechanical stability could be improved by the reduction in cavern size (storage volume), which indicates that one can design high-aspect-ratio rock caverns by dividing a single large cavern into multiple small caverns.

Analysis of Recent Research Trend in the Mining Industry and Rock Engineering in North Korea (북한의 광업 및 암반공학 분야 최신 연구동향 분석)

  • Kang, Il-Seok;Park, Young-Sang;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.29-38
    • /
    • 2020
  • Recent research trend of North Korean mining and rock engineering in the past 10 years was analyzed by a literature review of mining and rock engineering papers published in North Korean major mining journals, 'mining engineering', 'geological and geographical science' and 'technology innovation' published in 2008-2017. Basic database was established by organizing bibliographic information and abstract data of research papers in each journal. For each journal, paper submission trend classified by research field was analyzed using the basic database. And further study was conducted to the papers which showed distinguishing methodology and result, to analyze the trend of North Korean mining and rock engineering. The literature study showed a recent trend of quantification and automation in mining and rock engineering researches in North Korea, which seems due to recent changes in North Korea's science and technology policy and deterioration of the mining conditions. The results of this study can be applied in the feasibility studies of North Korea's mineral resource development projects. Future inter-Korean technical cooperation and site survey on North Korean field can secure complement the reliability of this study.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Analytical Formula for the Equivalent Mohr-Coulomb Strength Parameters Best-fitting the Generalized Hoek-Brown Criterion in an Arbitrary Range of Minor Principal Stress (임의 최소주응력 구간에서 일반화된 Hoek-Brown 파괴기준식을 최적 근사하는 등가 Mohr-Coulomb 강도정수 계산식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.172-183
    • /
    • 2019
  • The generalized Hoek-Brown (GHB) failure criterion developed by Hoek et al. (2002) is a nonlinear function which defines a stress condition at failure of rock mass. The relevant strength parameter values are systematically determined using the GSI value. Since GSI index is a value quantifying the condition of in-situ rock mass, the GHB criterion is a practical failure condition which can take into the consideration of in-situ rock mass quality. Considering that most rock mechanics engineers are familiar with the linear Mohr-Coulomb criterion and that many rock engineering softwares incorporate Mohr-Coulomb criterion, the equations for the equivalent friction angle and cohesion were also proposed along with the release of the GHB criterion. The proposed equations, however, fix the lower limit of the minor principal stress range, where the linear best-fitting is performed, with the tensile strength of the rock mass. Therefore, if the tensile stress is not expected in the domain of analysis, the calculated equivalent friction angle and cohesion based on the equations in Hoek et al. (2002) could be less accurate. In order to overcome this disadvantage of the existing equations for equivalent friction angle and cohesion, this study proposes the analytical formula which can calculate optimal equivalent friction angle and cohesion in any minor principal stress interval, and verified the accuracy of the derived formula.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

A Study on Key Parameters and Distribution Range in Rock Mechanics for HLW Geological Disposal (고준위방사성폐기물 심층처분을 위한 암반공학분야 핵심 평가인자 및 분포범위 연구)

  • Dae-Sung, Cheon;Won-kyong, Song;You Hong, Kihm;Kwangmin, Jin;Seungbeom, Choi
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.530-548
    • /
    • 2022
  • The site selection process for deep geological disposal of high-level radioactive waste will be conducted in stages, and 103 evaluation parameters related to site selection have been proposed. In the field of rock mechanics and rock engineering, there are 33 evaluation parameters for intact rock, joint and rock mass, and they are applied in the basic and detailed investigation stages. In this report, uniaxial compressive strength, in-situ stress, joint distribution, and rock mass classification were selected as the main evaluation parameters, and among them, uniaxial compressive strength and in situ stress were selected as key evaluation parameters. Statistical techniques or regression analysis were performed for granite in Wonju and Chuncheon to evaluate the distribution range for the selected key evaluation parameters. The average of the uniaxial compressive strength in the Wonju area estimated through the posterior distribution is about 171 MPa, and about 123 MPa in the Chuncheon area. The maximum in situ stress acting in the Wonju area was less than 30 MPa and less than 40 MPa in the Chuncheon area. The direction of the maximum horizontal stress calculated by regression analysis was 101° in Wonju, and in the case of Chuncheon, it was 95°, respectiviely.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Modeling on the Prediction of Flow Rate and Groundwater Level Drawdown Associated with Tunnel Excation in Fractured rock (단열암반내 터널 굴착에 따른 지하수유출 및 주변지역의 지하수위 하강예측 모델링)

  • Lee Byeong-Dae;Sung Ig-Hwan;Jeong Chan-Ho;Kim Yong-Je
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.289-301
    • /
    • 2005
  • Groundwater level drawdown of the first stage resulted from groundwater leakage into tunnel was predicted by an analytical approximation. And numerical modeling was performed to predict the flow rates into tunnel and the groundwater level decline in the vicinity of future proposed tunnel area using a groundwater flow model MODFLOW. Groundwater level of the first stage was predicted to decrease by 15.3 m in analytical approximation. The flow rates in the total length of the future tunnel, when it is excavated, would be approximately $1,870m^3/day$ in numerical model. The model predicts that the groundwater levels in the area around the future tunnel are expected to drop between 5 to 25 m relative to current groundwater levels. Under condition for a $50\%$ tunnel conductance increase, the flow rate was estimated to be $2,518m^3/day$ and the groundwater level drawdown was predicted to be between 5 to 35 m The flow rate and the predicted groundwater level drawdown under a $2,518m^3/day$ tunnel conductance decrease was estimated to be $1,273m^3/day$ and between 2 to 12 m.

Tunneling in Severe Groundwater Inflow Condition (지하수 과다유입 조건하에서의 터널굴착)

  • Lee, Young-Nam;Kim, Dae-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.67-76
    • /
    • 2006
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3 m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3km upstream of the powerhouse and headrace tunnel of 20km in length and penstock of 440m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflowraised the water level inside tunnel to 70cm, 17% of tunnel diameter (3.9m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made forthe excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF