DOI QR코드

DOI QR Code

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock

다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사

  • 박정욱 (한국지질자원연구원 지구환경연구본부) ;
  • 박찬 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 박의섭 (한국지질자원연구원 지구환경연구본부)
  • Received : 2016.06.20
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.

본 연구에서는 다각형 입자 기반 개별요소모델을 이용하여 실험실 스케일에서 등방성, 횡등방성 암석의 거동과 점진적 파괴 과정을 모델링할 수 있는 시뮬레이션 기법을 구축하였다. 가압에 따른 미세균열의 개시와 성장 과정을 모니터링할 수 있는 기법을 제안하였으며, 이를 통해 전단균열과 인장균열의 개시와 성장이 암석의 점진적 파괴 과정에 미치는 영향을 살펴보았다. 다각형 입자기반 개별요소모델의 거동 및 미세균열의 발생 양상은 실험실에서 관찰되는 암석의 일반적인 특징과 상당 부분 일치하는 것으로 나타났으며, 이를 통해 상기 모델이 암석의 역학적 거동을 합리적인 수준에서 재현할 수 있음을 확인하였다. 다각형 입자기반 개별요소모델에 대한 기초연구로서 접촉면의 미시변수와 시료의 거시물성 간의 상관관계를 살펴보았으며, 미시변수를 조정함으로써 다양한 암석의 강도와 변형 특성을 재현하였다. 한편, 상기 모델을 횡등방성 암석을 모사하기 위한 방법론을 제시하였으며, 이를 국내 횡등방성 암석인 아산편마암에 적용하여 근소한 오차 범위 내에서 실내시험 결과를 재현하였다.

Keywords

References

  1. Asadi, M.S., Rasouli, V., Barla, G., 2012, A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures, Rock Mech. Rock Eng., Vol. 45, No. 5, pp. 649-675. https://doi.org/10.1007/s00603-012-0231-4
  2. Brace, W.F., Paulding, B.W., Scholz, C., 1966, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., Vol. 71, No. 16, pp. 3939-3953. https://doi.org/10.1029/JZ071i016p03939
  3. Cho, J.W., Kim, H., Jeon, S., Min, K.B., 2012, Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist, Int. J. Rock Mech. Min. Sci., Vol. 50, pp. 158-169. https://doi.org/10.1016/j.ijrmms.2011.12.004
  4. Cho, N., Martin, C.D., Sego, D.S., 2007, A clumped particle model for rock, Int. J. Rock Mech. Min. Sci., Vol. 44, pp. 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  5. Claesson, J., Bohloli, B., 2002, Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution, Int. J. Rock Mech. Min. Sci., Vol. 39, No. 8, pp. 991-1004. https://doi.org/10.1016/S1365-1609(02)00099-0
  6. Cundall, P.A., 2001, A discontinuous future for numerical modelling in geomechanics?, Geotech. Eng., Vol. 149, No. 1, pp. 41-47. https://doi.org/10.1680/geng.2001.149.1.41
  7. Damjanac, B., Board, M., Lin, M., Kicker, D., Leem, J., 2007, Mechanical degradation of emplacement drifts at Yucca Mountain-A modeling case study: Part II: Lithophysal rock, Int. J. Rock Mech. Min. Sci., Vol. 44, No. 3, pp. 368-399. https://doi.org/10.1016/j.ijrmms.2006.07.010
  8. Diederichs, M.S., 2003, Rock fracture and collapse under low confinement conditions, Rock Mech. Rock Eng., Vol. 36, pp. 339-381. https://doi.org/10.1007/s00603-003-0015-y
  9. Fairhurst, C., Cook, N.G.W., 1966, The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface, paper presented at 1st Congress, Int. Soc. of Rock Mech., Lisbon.
  10. Fonseka, G.M., Murrell, S.A.F., Barnes, P., 1985, Scanning electron microscope and acoustic emission studies of crack development in rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 22, pp. 273-289. https://doi.org/10.1016/0148-9062(85)92060-1
  11. Goodman, R.E., 1989, Introduction to rock mechanics, 2nd ed. John Wiley & Sons.
  12. Hallbauer, D.K., Wagner, H.N.G.W., Cook, N.G.W., 1973, Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 10, pp. 713-726. https://doi.org/10.1016/0148-9062(73)90015-6
  13. Hoek, E., Martin, C.D., 2014, Fracture initiation and propagation in intact rock-a review, J. Rock Mech. Geotech. Eng., Vol. 6, No. 4, pp. 287-300. https://doi.org/10.1016/j.jrmge.2014.06.001
  14. Itasca Consulting Group Inc., 2014, UDEC (Universal Distinct Element Code) version 6.0. Minneapolis: Itasca.
  15. Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W., 2007, Fundamentals of rock mechanics, 4th ed, Wiley-Blackwell.
  16. Kemeny, J.M., 1991, A model for non-linear rock deformation under compression due to sub-critical crack growth, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 28, No. 6, pp. 459-467. https://doi.org/10.1016/0148-9062(91)91121-7
  17. Kranz, R.L., 1983, Microcracks in rocks: a review, Tectonophysics, Vol. 100, pp. 449-480. https://doi.org/10.1016/0040-1951(83)90198-1
  18. Lan, H., Martin, C.D., Hu, B., 2010, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading, J. Geophys. Res., Vol. 115, B01202.
  19. Lockner, D., 1993, The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 30, No. 7, pp. 883-899. https://doi.org/10.1016/0148-9062(93)90041-B
  20. Martin, C.D., 2014, The impact of brittle behaviour of rocks on tunnel excavation design, In: Proceedings of EUROCK2014, Vigo, pp. 51-62.
  21. Martin, C.D., Chandler, N.A., 1994, The progressive fracture of Lac du Bonnet granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 31, pp. 643-659. https://doi.org/10.1016/0148-9062(94)90005-1
  22. Park, B., Min, K.B., 2015, Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock, Int. J. Rock Mech. Min. Sci., Vol. 76, pp. 243-255.
  23. Park, J.W., Lee, Y.S., Park, C., Park, E.S., 2014, Numerical simulation for characteristics of rock strength and deformation using grain-based distinct element model, Tunnel & Underground Space, Vol. 24, No. 3, pp. 243-254. https://doi.org/10.7474/TUS.2014.24.3.243
  24. Park, J.W., Song, J.J., 2009, Numerical simulation of a direct shear test on a rock joint using a bonded-particle model, Int. J. Rock Mech. Min. Sci., Vol. 46, pp. 131-1328.
  25. Paterson, M.S., Wong, T.F., 2005, Experimental rock deformation -the brittle field, 2nd edition, Berlin: Springer.
  26. Potyondy, D.O., 2010, A grain-based model for rock: approaching the true microstructure, In: Proceedings of Bergmekanikk I Norden. Kongsberg, Norway.
  27. Potyondy, D.O., 2012, A flat-jointed bonded-particle material for hard rock, In: Proceedings of 46th U.S. Rock mechanics/geomechanics symposium, Chicago, USA, ARMA 12-501.
  28. Potyondy, D.O., 2013, PFC3D flat joint contact model version1, Itasca Consulting Group, Minneapolis, Technical Memorandum ICG7234-L.
  29. Potyondy, D.O., 2015, The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions. Geosystem Eng., Vol. 18, pp. 1-28. https://doi.org/10.1080/12269328.2014.998346
  30. Potyondy, D.O., Cundall, P.A., 2004, A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., Vol. 41, No. 8, pp. 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  31. Potyondy, D.O., Hazzard, J.F., 2008, Effects of stress and induced cracking on the static and dynamic moduli of rock, In: Proceedings of First International FLAC/DEM Symposium, Minneapolis, USA, pp. 147-156.
  32. Schopfer, M.P.J., Abe, S., Childs, C., Walsh, J.J., 2009, The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling, Int. J. Rock Mech. Min. Sci., Vol. 46, pp. 250-261. https://doi.org/10.1016/j.ijrmms.2008.03.009
  33. Shin, S.W., 2010, Excavation Disturbed Zone in Lac du Bonnet Granite, PhD thesis, Univeristy of Alberta, Canada.
  34. Simmons, G., Richter, D., 1976, Microcracks in rock, In: The physics and chemistry of minerals and rocks, New York: Wiley, pp. 105-137.
  35. Tapponier, P., Brace, W.F., 1976, Development of stress induced microcracks in Westerly granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 13, pp. 103-112. https://doi.org/10.1016/0148-9062(76)91937-9
  36. Wanne, T.S., Young, R.P., 2008, Bonded-particle modeling of thermally fractured granite, Int. J. Rock Mech, Min. Sci., Vol. 45, pp. 789-799. https://doi.org/10.1016/j.ijrmms.2007.09.004
  37. Yoon, J.S., Zimmermann, G., Zang, A., Stephansson, O., 2015, Discrete element modeling of fluid injectioninduced seismicity and activation of nearby fault 1, Can. Geotech. J., Vol. 52, No. 10, pp. 1457-1465. https://doi.org/10.1139/cgj-2014-0435
  38. Zhang, F., Huang, H., Damjanac, B., 2012, DEM/pore network modeling of fluid injection into granular media, In: Proceedings of 46th U.S. Rock mechanics/geomechanics symposium, Chicago, USA, ARMA 12-621.