DOI QR코드

DOI QR Code

A Study on Key Parameters and Distribution Range in Rock Mechanics for HLW Geological Disposal

고준위방사성폐기물 심층처분을 위한 암반공학분야 핵심 평가인자 및 분포범위 연구

  • Dae-Sung, Cheon (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Won-kyong, Song (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • You Hong, Kihm (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kwangmin, Jin (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Seungbeom, Choi (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute)
  • 천대성 (한국지질자원연구원 국토지질연구본부) ;
  • 송원경 (한국지질자원연구원 국토지질연구본부) ;
  • 김유홍 (한국지질자원연구원 국토지질연구본부) ;
  • 진광민 (한국지질자원연구원 국토지질연구본부) ;
  • 최승범 (한국원자력연구원 핵연료주기환경연구소 저장처분기술관리부)
  • Received : 2022.12.12
  • Accepted : 2022.12.23
  • Published : 2022.12.31

Abstract

The site selection process for deep geological disposal of high-level radioactive waste will be conducted in stages, and 103 evaluation parameters related to site selection have been proposed. In the field of rock mechanics and rock engineering, there are 33 evaluation parameters for intact rock, joint and rock mass, and they are applied in the basic and detailed investigation stages. In this report, uniaxial compressive strength, in-situ stress, joint distribution, and rock mass classification were selected as the main evaluation parameters, and among them, uniaxial compressive strength and in situ stress were selected as key evaluation parameters. Statistical techniques or regression analysis were performed for granite in Wonju and Chuncheon to evaluate the distribution range for the selected key evaluation parameters. The average of the uniaxial compressive strength in the Wonju area estimated through the posterior distribution is about 171 MPa, and about 123 MPa in the Chuncheon area. The maximum in situ stress acting in the Wonju area was less than 30 MPa and less than 40 MPa in the Chuncheon area. The direction of the maximum horizontal stress calculated by regression analysis was 101° in Wonju, and in the case of Chuncheon, it was 95°, respectiviely.

고준위방사성폐기물 심층처분 부지선정과정은 단계별로 진행될 예정이며, 부지선정과 관련된 평가인자는 103개로 제안된 바 있다. 이 중 암반공학분야에서 무결암, 절리나 암반에 대한 평가인자는 33개가 있으며, 기본조사와 상세조사 단계에서 적용된다. 본 보고에서는 일축압축강도와 원위치 응력, 절리분포, 암반등급을 주요 평가인자로 선정하고, 이 중 일축압축강도와 원위치 응력을 핵심 평가인자로 선정하였다. 선정한 핵심 평가인자에 대한 분포범위를 평가하기 위해 원주와 춘천지역의 화강암을 대상으로 통계적 기법 또는 회귀분석을 수행하였다. 사후분포를 통해 추정된 원주지역의 일축압축강도의 평균은 약 171 MPa, 춘천지역은 약 123 MPa이다. 원주지역에 작용하는 최대 원위치 응력은 30 MPa 이하이며 춘천지역은 40 MPa 이하였다. 회귀분석에 의해 산정된 최대수평응력의 방향은 원주의 경우 101°이며 춘천의 경우는 95°였다.

Keywords

Acknowledgement

본 논문은 한국지질자원연구원 2022년 기본사업의 하나인 'HLW 심층처분을 위한 지체구조별 암종 심부 특성 연구(GP 2020-002; 22-3115)'사업의 지원을 받아 수행하였습니다.

References

  1. Bae, S. and Jeon, S., 2005, Characteristics of the horizontal stress and the possiblity of stress induced brittle failure in Chuncheon-Yanggu mountainous region by the in-situ stress measurements, Tunnel & Underground Space, 15(2), 157-167.
  2. Cheon, D.S., Kihm, Y.H., Jin, K., Song, W.K., and Choi S., 2022, A study on nationwide maps with geoenvironmental information and geological characteristics of bedrock for HLW Disposal, Journal of the Korean Society of Mineral and Energy Resources Engineers, 59(3), 276-292. https://doi.org/10.32390/ksmer.2022.59.3.276
  3. Choi, J., Chae, B.-G., Kihm, Y.-H., Park, E.-S., Hyun, S., Kim, H.C., Nahm, W.-H., Jeon, J.S., and Suk, H., 2017, Suggestion of site investigation method for HLW disposal facility, Journal of the Korean Society of Mineral and Energy Resources Engineers, 54(4), 303-318. https://doi.org/10.12972/ksmer.2017.54.4.303
  4. Choi, S., Cheon, D.S., Jeong, H., and Jeon, S., 2021, Establishment of a basic DB of Korean intact rock properties applicable to site characterization for HLW geological disposal, Tunnel & Underground Space, 31(2), 83-97. https://doi.org/10.7474/TUS.2021.31.2.083
  5. Choi, S., Kihm, Y.H., Kim, E., and Cheon, D.S., 2020, Rock Mechanical Aspects in Site Characterization for HLW Geological Disposal: Current Status and Case Studies, Tunnel & Underground Space, 30(2), 136-148. https://doi.org/10.7474/TUS.2020.30.2.136
  6. IAEA, 1984. Siting of Geological Disposal Facilities, Safety Series No. 111-G-4.1, Vienna, 48p.
  7. KIGAM, 2016, Development of regional geological survey methodology for disposal of spent nuclear fuel, IP2015-020-2016(1), Daejeon, Korea, 524p.
  8. KIGAM, 2019. Development of nationwide geoenvironmental maps for HLW geological disposal, GP2017-009-2019, Daejeon, Korea, 603p.
  9. KIGAM, 2021, Research on rock properties in deep environment for HLW geological disposal. GP2020-002-2021, Daejeon, Korea, 350p.
  10. Kim, E., Kihm, Y.H., Cheon, D.S., Hyun, S.P., Jeon, J.S., Kim, H.C., Nahm, W.H., Suk, H., Jin, K., Ko, K.T., and Choi, S., 2020a, Development of Geoscientific Site Assessment Factors for the Deep Geological Disposal of HLW in South Korea, Journal of The Korean Society of Mineral and Energy Resources Engineers, 57(2), 215-233. https://doi.org/10.32390/ksmer.2020.57.2.215
  11. Kim, H., Synn, J.H., Park, C., Song, W.K., Park, E.S., Jung, B.K., Cheon, D.S., Bae, S., Choi, S.O., Chang, C., and Min, K.B., 2020b, Korea stress map 2020 using hydraulic fracturing and overcoring data, Tunnel & Underground Space, 31(3), 145-166. https://doi.org/10.7474/TUS.2021.31.3.145
  12. Kim, O.J., Kim, S.U., Yoo, B.W., and Park, B.K., 1974, Geological Report of The Gapyeong Sheet, Korea Institute of Geoscience and Mineral Resources, 50p.
  13. Koh, H.J., Kim, S.W., and Lee, S.R., 2011, Geological Report of The Anheungri Sheet, Korea Institute of Geoscience and Mineral Resources, 80p.
  14. KSRM, 2016, Standard method for determination of in situ stress using hydraulic fracturing test
  15. Martin, D. and Christiansson, R., 2009, Estimating the potential spalling around a deep nuclear waste repository in crystalline rock, International Journal of Rock Mechanics and Mining Sciences, 46(2), 219-228. https://doi.org/10.1016/j.ijrmms.2008.03.001
  16. Park, B.K., Chang, H.W., and Woo, Y.K., 1989, Geological Report of The Wonju Sheet, Korea Institute of Geoscience and Mineral Resources, 37p.
  17. Park, H.I., Chi, J.M., Chang, K.H., and Ko, I.S., 1974, Geological Report of The Naepyeong Sheet, Korea Institute of Geoscience and Mineral Resources, 34p.
  18. Sari, M. and Karpuz, C., 2006, Rock validity and establishing confining pressure levels for triaxial test on rocks, International Journal of Rock Mechanics and Mining Sciences, 43(2), 328-335. https://doi.org/10.1016/j.ijrmms.2005.06.010
  19. Woo, I., Um, J.G., and Park, H.J., 2009, Variation of geomechanical characteristics of granite and orthogneiss in Wonju area due to accelerated artificial chemical weathering tests, Tunnel & Underground Space, 19(3), 213-225.