DOI QR코드

DOI QR Code

3D Tunnel Face Modelling for Discontinuities Characterization: A Comparison of Lidar and Photogrammetry Methods

불연속성 특성화를 위한 3차원 터널 막장 모델링: 라이더 및 사진 측량 접근 방식의 비교 분석 중심으로

  • Chuyen, Pham (Dept. of Geo-Space Engineering, University of Science and Technology) ;
  • Hyu-Soung, Shin (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
  • 추엔 팜 (한국과학기술연합대학원대학교 지반신공간공학과) ;
  • 신휴성 (한국건설기술연구원 미래스마트건설연구본부)
  • Received : 2022.12.14
  • Accepted : 2022.12.20
  • Published : 2022.12.31

Abstract

Tunnel face mapping involves the determination of rock discontinuities or weak rock conditions where extra support might be required. In this study, we investigated the application of Lidar scanning and photogrammetry to quantitatively characterize discontinuities of the rock mass on the tunnel face during excavation. The 3D models of tunnel faces generated by using these methods enable accurate and automatic discontinuity measurement to overcome the limitations of manual mapping. The results of this study show that both photogrammetry and Lidar can be used to reconstruct the 3D model of the tunnel face, although the photogrammetric 3D model is less detailed than its counterpart produced by Lidar. Given acceptable accuracy and cost-effectiveness, photogrammetry can be a fast, reliable, and low-cost alternative to Lidar for acquiring 3D models and determining rock discontinuities on tunnel faces.

터널 막장관찰은 막장 암반의 불연속면과 취약한 암반상태의 조사와 평가를 포함한다. 본 연구에서는 굴착 중에 터널 막장 불연속면의 기학학적 특성을 자동으로 정량화 하기 위한 라이더 스캔 및 사진측량기법의 적용성에 대해 고찰하였다. 이러한 기법들로 구현되는 터널 막장의 3차원 모델은 인력으로 진행되는 터널 막장관찰 작업의 한계를 넘어서 일관성을 유지하며 자동으로 막장관찰상의 불연속면의 정보화를 가능하게 해준다. 본 연구를 통해 두 기법 모두 터널 막장의 불연속면 특성화에 성공적으로 적용될 수 있음을 보였다. 공학적 사용을 위한 허용 정확도 수준을 감안하여, 라이더기법이 정확도 측면에서는 사진측량기법에 비해 다소 뛰어나지만, 신뢰성 및 시간 비용 측면에서는 사진측량기법이 월등히 뛰어남을 알 수 있었다.

Keywords

Acknowledgement

This research was supported by the project "Development of environmental simulator and advanced construction technologies over TRL6 in extreme conditions" funded by KICT.

References

  1. Behan, A., 2004, Digital Photogrammetry: Theory and Applications. Photogrammetric Record -Photogramm Rec, 19, 250-251, doi: 10.1111/j.0031-868X.2004.282_1.x.
  2. Chazette, P., Totems, J., Hespel, L., and Bailly, J., 2016, Principle and Physics of theLiDAR Measurement. N. Baghdadi, M. Zribi (Eds), Optical Remote Sensing of Land Surfaces, iSTE Press and Elsevier.
  3. Dueholm, K. S., 1992, Geologic Photogrammetry using standard small-frame cameras. Rapp. Gronlands geol. Unders., 156.
  4. Duric, I., Vasiljevic, I., Obradovic, M., Stojakovic, V., Kicanovic, J., and Obradovic, R., 2021, Comparative Analysis of Open-Source and Commercial Photogrammetry Software forCultural Heritage. Proceedings of the International Conferenceon Education and Research in Computer Aided Architectural Design in Europe, 2, 243-252.
  5. Griwodz, C., Gasparini, S., Calvet, L., Gurdjos, P., Castan, F., Maujean, B., De Lillo, G., and Lanthony, Y., 2021, Alicevision meshroom: An open-source 3d reconstruction pipeline. In Proceedings of the 12th ACM Multimedia Systems Conference, pp. 241-247.
  6. ISRM, 1978, Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr., 15(6), 319-368. https://doi.org/10.1016/0148-9062(78)91472-9
  7. Jaeger, J.C., and Cook, N.G.W., 1979, Fundamentals of Rock Mechanics. 3rd ed. Halsted Press, NY. 112p.
  8. Paixao, A., Muralha, J., Resende, R. et al., 2022, Close-Range Photogrammetry for 3D Rock Joint Roughness Evaluation. Rock Mech Rock Eng, 55, 3213-3233. https://doi.org/10.1007/s00603-022-02789-9.
  9. Riquelme, A.J., Abellan, A., Tomas, R., and Jaboyedoff, M., 2014, A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci., 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014
  10. Sturzenegger, M. and Stead, D., 2009a, Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106, 163-182. https://doi.org/10.1016/j.enggeo.2009.03.004
  11. Sturzenegger, M., Stead, D., Beveridge A., and Lee, S., 2009b, Long-range terrestrial digital photogrammetry for discontinuity characterization at Palabora open-pit mine. In: Didrichs, M., Grasselli, G. (eds), Proceedings of the 3rd CANUS Rock Mechanics Symposium, ROCKGEN09, May 2009, Toronto, p. 3984.
  12. Sturzenegger, M. and Stead, D., 2009c, Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Natural Hazards and Earth System Sciences, 9, 267-287. https://doi.org/10.5194/nhess-9-267-2009
  13. Tannant, D., 2015, Review of photogrammetry-based techniques fo r characterization and hazard assessment of rock faces. Int. J.Georesour. Environ. IJGE, 1, 76-87.