• Title/Summary/Keyword: robust state observer

Search Result 149, Processing Time 0.022 seconds

The study of Robust Control using a State-Space Disturbance Observer (상태 공간 외란관측기를 이용한 강인 제어기법 연구)

  • Cho, Kyu-Nam;Chung, Chung-Choo;Lee, Seung-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.705-707
    • /
    • 2004
  • In this paper, we propose a robust control technique against parameter uncertainties as well as external disturbances. It is robust control scheme using discrete-time state space disturbance observer. It does not require disturbance modeling, plant inverse modeling and/or Q filter. In frequency domain, its performance is evaluated in terms of sensitivity and complementary sensitivity as well as gain and phase margin. Finally we discuss design criterion of state space disturbance observer considering its performance in frequency domain.

  • PDF

Robust Reduced Order State Observer for Lipschitz Nonlinear Systems (Lipschitz 비선형 시스템의 강인 저차 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.837-841
    • /
    • 2008
  • This paper presents a robust reduced order state observer for a class of Lipschitz nonlinear systems with external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level. Finally, a numerical example is provided to verify the proposed design method.

Design and Analysis of a Robust State Estimator Combining Perturbation Observer (섭동관측기를 연합한 강인 상태추정기 설계 및 해석)

  • Kwon SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.477-483
    • /
    • 2005
  • This article describes a robust state estimation method which enables to produce reliable estimates in spite of heavy perturbation including plant uncertainty and external disturbances. The main idea is to combine the standard state estimator with the perturbation observer in the estimator frame. The perturbation observer reflects equivalent quantity of plant uncertainty and external disturbances during the estimation process so that the state estimator dynamics gets as close as possible to the real plant dynamics. The robust state estimator proposed in this paper is given in a recursive discrete-time form which is very useful fur implementation purpose. In terms of the error dynamics derived for the robust state estimator, we discuss the stability issue and noise sensitivity. The effectiveness and practicality of the robust state estimator are verified through numerical examples and experimental results.

Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer (퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.

Robust speed control of induction motor using sliding mode state observer (슬라이딩모드 상태관측기를 이용한 유도전동기의 강인한 속도제어)

  • Yoon, Byung-Do;Kim, Yooo-Ho;Kim, Choon-Sam;Kim, Chan-Ki;Han, Jae-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.280-282
    • /
    • 1994
  • This paper proposes sliding mode state for robust speed control of induction motor. Sliding mode state observer is robust for measurement noise, modeling-error and load disturbance. The pole of sliding mode state observer can be placed at (0,0) in Z-plane for fast response. This method is, namely, deadbeat control. Sliding mode state observer output is discontinuous on a switching hyperplance, that causes harmful effects such as current harmonics and speed oscillation. In this paper, also the reducing method of the chattering of sliding mode state observer output is proposed. The proposed system is digitally implemented with TMS320C31.

  • PDF

A Motion Control of a Two Degree of Freedom Inverted Pendulum with Passive Joint using Discrete-time Sliding Observer Based VSS Controller (슬라이딩 관측기를 갖는 가변구조제어기에 의한 도립진자의 운동제어)

  • Suh, Yong-Seok;You, Wan-Sik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.468-471
    • /
    • 1994
  • This paper presents the digital implementation of an optimal and robust VSS controller with sliding observer. Firstly, a discrete-time VSS control law which enables the system state to move into a sliding sector where the closed-loop system is stable is designed. Then optimal control theory is used to design an optimal sliding sector. Secondly, a sliding observer which provide robust state estimation against model-plant mismatches due to parameter uncertainties is designed for the sampled-data multivariable systems. Finally, modified sliding observer which effectively reduce chattering of state variables in state estimation was proposed. The proposed scheme was applied 10 a two degree of freedom inverted pendulum with passive joint to verify robust motion control. Computer simulation results confirm the viability of the proposed observer-based controller.

  • PDF

Robust State Observer for Lipschitz Nonlinear Systems with Time Delay (시간 지연을 갖는 Lipschitz 비선형 시스템의 강인 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1089-1093
    • /
    • 2008
  • This paper presents a robust state observer design for a class of Lipschitz nonlinear systems with time delay and external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level in spite of the existence of time delay. Finally, a numerical example is provided to verify the proposed design method.

Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator (강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

Robust State Observer for Lipschitz Nonlinear Systems with Time Delay (시간 지연을 갖는 Lipschitz 비선형 시스템의 강인 상태 관측기)

  • Lee, Sung-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.207-208
    • /
    • 2008
  • This paper presents a robust state observer design for a class of Lipschitz nonlinear systems with time delay and external disturbance. A sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level in spite of the existence of time delay. Finally, a numerical example is provided to verify the proposed design method.

  • PDF

The Robust Position Control of Induction Motors using a Binary Disturbance Observer (바이너리 외란관측기를 이용한 유도전동기의 견실한 위치제어)

  • Han, Yun-Seok;Choe, Jeong-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 1999
  • A control approach for the robust position control of induction motors based on the binary disturbance observer is described. The conventional binary disturbance observer is used to remove the chattering problem of a sliding mode disturbance observer. However, the steady state error may exist in the conventional binary disturbance observer because it estimates external disturbance with a constant boundary layer. In order to overcome this problem, new binary disturbance observer with an integral augmented switching hyperplane is proposed. The robustness is achieved, and the continuous control is realized by employing the proposed observer without the chattering problem and the steady state error. The effectiveness of the proposed observer is confirmed by the comparative experimental results.

  • PDF