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In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The
nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling
and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid
control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator
with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate
the unknown intemal state of the LuGre friction model. Next, a RENN estimator is introduced to approximate the unknown
lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation
error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw
and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

Key Words : LuGre friction model(LuGre up2-d), Sliding mode control(&2}o|d F=A]|o]), Robust friction state observer(Z+210}
AT 2H27])), Recurrent fuzzy neural networks(2=3H3 o] A A1731}), Estimation error estimator(3274 @2} 4 7))

1. Introduction appeared in mechanical system between two contact
surfaces. This often worsens the performance of the servo
A nonlinear friction is an unavoidable phenomenon control system since it causes the steady state error, limit
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cycle and low bandwidth in closed-loop control system.
Specially, in the low velocity range the effects of the
friction on the performance of the servo system are more
greater than moderate velocity range since the friction
forces/torques coming from the stick and pre-sliding
motion are dominant than control input forces/torques.
The friction model at moderate velocity, called as the
classical friction model is built by the Coulomb and
viscous friction. However, this classical friction model
cannot capture the characteristics such as the Stribeck
effect, stick-slip, pre-sliding hysteretic motion, break-away
force, which play a significant role in application on high
precise motion control.

Canudas de Wit et al."”, presented a dynamic friction
model, called as LuGre friction model, which captures
both dynamic friction of low velocity and steady state
friction characteristic. As the LuGre friction model has
the simple and nice structure mathematically, then many
researchers have chosen it as a representative friction
model to control the frictional servo mechanical system
such as the robots, X-Y table, electro-mechanical actuator,
tire/road friction and machine tools, etc. But since the
LuGre friction model has some problem in describing the
hysteresis motion in pre-sliding, Dupont et al.” developed
the improved friction model, called ‘elasto-plastic model’.

Moreover, Swevers et al.®" and Han et al.”

developed
the improved friction model, called ‘Leuven model’ and
‘Maxwell-slip model’, respectively, where the hysteresis
property in pres-sliding range is modified, using the
Preisach technique frequently used in magnetism”, However,
this model has not been widely used yet due to the
complexity of modeling the hysteresis phenomenon in
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the pre-sliding range. Therefore, several researche
have adopted to control the friction system as the LuGre
model since it almost satisfy the most part of the nonlinear
friction characteristic except the hysteresis micro unit
motion of the pre-sliding range and is easier to analyze
and implement than other second-order friction models.

In general, the control scheme on the compensation of
nonlinear friction is divided into two sides of approaches:
friction model-based and nonmodel-based one. The latter

approach is mainly used when the exact friction model
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cannot be constructed and no need precise tracking per-

(10)

formance. The neural network' ~ and variable structure

control'” correspond to this case. While the model-based

method!'>"

can be applied to the case that the identifi-
cation of the parameter of friction is possible with in a
certain range of a precision degree, and so a more precise
tracking performance can be obtained. However, this
approach may give a little complexity and difficulty of
the exact identification of friction parameters to the
control system. Moreover, since the state representing the
bristle deformations of the LuGre friction model cannot
be measured directly, the estimation process for it must
be presented to obtain more precise information on the
friction dynamic. In addition, the parameter variations
and unmodeled disturbances can reduce the performance
of the control system due to the model-based property of
the control system. Thus, the robust controller to overcome
the modeling error and parameter variations must be
designed to obtain the precise tracking performance. The
approximation on the uncertainties of the system can be
done well by the fuzzy or neural networks scheme.
Recently, fuzzy logic and neural networks much research
has been rmuch attention in identification and control of

complex dynamic systems. They have both capability of
(14
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approximating any continuous nonlinear functions closel
but there are some differences between them. The fuzzy
logic possesses linguistic information and logic control
and the neural networks have the learning, parallelism,
and fault-tolerance. Moreover, the development of integrated
fuzzy neural networks (FNN), which combine the capability
of both of their advantages, has also grown“s\m, However,
the draw back of the FNN is that the application domain
is limited to static mapping due to its feedforward network
structure which requires a large number of neuron or
membership function and is sensitive to the training data.
On the other hand, the recurrent FNN (RFNN)('HO)
naturally involves dynamic elements in the form of feedback
connections used as internal memories. Thus, the RFNN
is a dynamic mapping and demonstrates good control
performance in the presence of uncertainty such as para-
meter variations of the system, external load, unmodeled
dynamics compared to the feedforward FNN.
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In this paper, we propose a hybrid friction control system
comprised of a sliding mode controller, a robust dynamic
friction state observer, a RFNN and an approximation
error estimator. A friction state observer can estimate the
immeasurable internal friction state of the LuGre friction
model. In addition, a RFNN is introduced to approximate
the uncertainty and the adaptive robust estimator for the
approximation error is also designed. A mechanical servo
system composed of ball-screw and DC servo motor is
chosen to demonstrate the good performance of a proposed

control scheme through the simulation and experiment.

2. SMC control and Robust Friction
State Observer

2.1 System dynamics
The dynamic model for the mechanical system in the

presence of friction is
Ji+o,9+T, =u (1)

where J is a moment of inertia, o, is a viscous friction
coefficient, 7; is a nonlinear dynamic friction. In well-
known LuGre friction model, the interface between two
surfaces is modeled by contact between sets of elastic
bristles shown in Fig. 1. When a tangential torque is
applied, the elastic bristle will deflect like spring that
gives rise to the friction torque. If the torque is increased
beyond a certain magnitude, some of the elastic bristles
deflect so much and they will slip. An average defection
of the elastic bristle is defined by z and its dynamic is

< q(1)
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Fig. 1 The friction interfaces with bristles between two
surfaces

given as follows":

z=4-f(9)z )
where
7o) -
g(9) 3)

In Eq. (2), q is the relative velocity between two contact
surfaces. The function g(g) is positive and depends on
many factors such as the material properties, lubrication,
and temperature. The function g(g) is parameterized as

follows:
008(@) =T, +(T, ~T.)e @4 @

where 7, is Coulomb friction, 7, is stiction level, g, is

Stribeck velocity and i denotes coefficient depending on
the friction system, where i is selected as 2 in metal
friction and 0.5 in tire/road friction system, respectively.
The dynamic friction term excluding viscous friction torque
is described by

T, =0z +0yz ®)

where o, is the stiffness of the elastic bristle, o, is a
damping coefficient in elastic range. In Eq. (2) and Eq.
(5), 7; can be rewritten by

T, =®(9z+0,q (6)
where the auxiliary function qﬁ(d) is defined as follows:
&(q)=0y—01/(49) ©)

Let us introduce Eq. (6) into Eq. (1) and consider the
uncertainty of the modeling error of the friction and other
disturbances.

Jij+o,q+T, =u ®)

where o, =0, +0, and 7, =&(g)z.
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2.2 Design of sliding mode controlier and
friction state observer
We define the sliding surface of the SMC of the integral

type and the position tracking error e(t} as follows:

s= e+ et o, fedt

©

e=q,-q (10)

where ¢, and ¢, are the positive design constants and g,
is the desired position trajectory. Our objective is to
choose control input & such that the system state is driven
to the sliding surface s =0 regardless of the friction. The
control input can be adopted by the form with unified
smooth control law as follows:
u=J(ce+g,; +c,e)+oq+ fs+T,

(an

where S is a positive constant. Let us introduce Eq. (11)
into Eq. (8) and rearrange it in terms of tracking error
as follows:

JUGy =@ +cié+cyel=~fs (12)

In Eq. (12), the following closed-loop error is obtained
as

J (13)

Define the Lyapunov function as the following non-
negative function:

1o,
V, = Ji
e (14)

Taking the time derivative of Eg. (14) and considering
Eq. (13), the following result can be obtained as follows:

V,=Jss=—fs* <0 (15)

From the above equation, W,{(Z(t)) is defined by

W(Z(t) = fs* <=V, (16)

Since ¥, <0, V| is nonincreasing. Thus, it has a limit

Vi @8 t-sco. Integrating Eq. (16), then

93

32130 fo W, (Z(z))d7 < —llin; fo Vdr

= im{, (Z(16)) =V (ZO)}=Vi (1) = 1(®) 3

i .
which means that f W, (ZAr))dr exits and finite. Since

W, (Z¢)) is also uniformly continuous, the following result

can be obtained from Barbalat lemma®”:

lim {7, (Z(z)d <o (18)
Also, Wl(t) is bounded, so by Barbalat lemma,
limW,(t) =0. That is, s—0 as t—co, and the SMC control

frr 0

system can have the asymptotic stability.

2.3 Design uncertainty estimator using recurrent
fuzzy neural network

However, since the friction state z cannot be measured
directly and the fiiction parameters can be changed according
to the contact surface condition and other variation of
lubrication property, the friction function 7 of the control
mput of Eq. {(11) cannot be known. Furthermore, since
the exact measurements of each friction parameter can be
very hard to be accomplished, the discrepancy between
real friction model and identified one cannot be avoidable.
Thus, the controller based on the fixed friction parameters
has naturally a weakness to the variation of friction para-
meters and in complete parameter modeling. Therefore,
the friction state observer and uncertainty estimator of
friction parameters must be adopted to design the robust
controller. The dynamics of Eq. (8) containing the uncer-
tainty can be changed as

Ji+o,q+T,+T;=u

(19

where 7} is the total lumped friction uncertainty.
Now, since the value of 7, cannot be known exactly,

the recurrent fuzzy neural network based estimator is

adopted to approximate the valne of 7. Then, the control

input of Eq. (11) s rewritten as

Uppy =J(C16+ Gy +Cr@)+0ag+ P+ T, + T, (20)
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where 7 is estimate of 7, and 7.=&(g)z, where 2 is
the estimate of z which can be obtained from the friction
state observer to be presented in next section.

A four-layer recurrent fuzzy neural network"® is shown
in Fig. 2. Layer 7 is the input layer, which accepts the
two input variables. In layer II representing the fuzzy
rules, Gaussian membership values are calculated. The
link before layer Il represents the preconditions of the
rules, and the links after layer [l represent the con-
sequence of the rule nodes. Layer I} is the output layer.

The interactions for the layers are given as follows:

A. Description of the RFNN

Layer I (Input layer): For every node i in this layer,
the net input and the net output are represented as

net! =u! +w/ .0/ (N -1)

@n

O/ (N) = f (vet])) =net] (N), i =12 (22)

where ul =e, u} =e, «/ is the recurrent weights for the
units in the input space and N denotes the number of
iterations.

Layer II (Membership layer): In this layer, each node
performs a membership function. The Gaussian function

is adopted as the membership function. For the jth node,

Ouiput
Layer

Rule
Layer

Membership
Layer
i

Input
Layer

Fig. 2 Structure of the four-layer RFNN
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I/ 2
(u; - mg)

(o-ij)

O (NY= f] (net’] (N)) = exp(net] (N)), j=1,...,n (24)

/s _
net; (N)= 23)

where m,; and o,; are, respectively, the mean and the
standard deviation of the Gaussian function in the jth
term of the ith input linguistic variable v to the node
of layer II, and n is the total number of the linguistic
variables with respect to the input nodes.

Layer IIl (Rulelayer): Each node & in this layer is
denoted by I, which multiplies the input signals and
outputs the result of the product. For the kth rule node

1 ur, i
net, (N)=];[wjk u; (V) 25)

O (Ny= £ (net” (N)) =nety (N),k=1, ... ,I (26)

where u/” represents the jth input to the node of layer
III, vy is the weights between the membership layer and
the rule layer, are assumed to be unity; [ is the number
of rules with complete rule connection if each input node
has the same linguistic variables.

Layer IV (Output layer): The single node o in this layer
is labeled as X, which computes the overall output as the

summation of all input signals:

net!” (N) = %ng)/ uy (N) @7

ol (Ny = £V et (N)) =net]” (M), 0=1 (28

where the connecting weight w!” is the output action
strength of the oth output associated with the kth rule,
ul? represents the kth input to the node of layer IV, and

O is the output of the fuzzy neural network.

B. On-line learning algorithm

In order to train the RFNN according to the minimization
of the error using the gradient search algorithm, the e and
e are taken as the inputs of the RFNN and the energy
function is defined as

1.2
E—2€ (29)
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According to the gradient descent method, the detail
explanations on the update of the weights and mean and
standard deviation of the hidden layer in each layer are

£20)

illustrated in reference®™ and from®”, the updates are

given as follows:

wz-[ (N+1)= wl-l (Ny+ AW;! (39)
miy (N +1) = m; (N) + 4m;; (31)
o (N+1)= 0 (N)+ Aoy, (32)
Why (N +1) = wiy (N)+ dwf) (33)

2.4 Design the robust sliding mode controlier
From the RFNN, the approximation of uncertainty fd

can be obtained. However, since the exact estimation of
the uncertainty is hard to be obtained from the RFNN
estimator, the following RFNN control input with robust
term (RFNR) is proposed to consider the approximation
error as follows:

tppyg = J(C1€+ Gy +c2e)+o-3q+,8s+’fz +fd +U (34)

where U is estimate of uncertainty estimation error
Ul= T,~ T;). Let us introduce Eq. (34) into Eq. (19) and

rearrange it in terms of tracking error as follows:

JGy =) +cié+erel=T, =T, - fs+U~U
=PZ - ps+U (35)

where U= U/~ U. Eq. (35) can be written by

.1 . ~
s=—(D(g)z — fs+U
7 (DT - p ) (36)
As an extension of author’s previous research’”, a robust
friction state observer, which exponentially estimates the
state z, is given by
. J
Z=Weh—s ke
o1 . .
w=—[-cgw— 0,4 — Jﬂ)—s +uprnr + PG)S
gy o1

—ogkie—J(Gy +cié+ cze)-fd -U] - ke (38)

where w is auxiliary variable and &, takes a role of the
adjusting transient performance of the observer. Let us
define the Lyapunov function as follows:

2n (39)
The time derivative of Eq. (39) is
Vy =S[@G)E - fs+ U+ o35 + ;]}-17(?
—S[D()F — s+ Ul+ 07+ )t %&(—z})
= s[®(§)7 - fs + U]
+0y E{g(z) — F @zt +w+ Gils +k el + % G0

5 y e 14
-2 30 +U(s ——U
A -onz (s " ) (40)

The adaptive robust estimation law for the estimate of
uncertainty approximation etror is chosen by

U=n-s 41y
Then, Eq. (40) can be written as
VZ :—ﬁs2 —O'OZ2 —Eﬁ

<0zt ~ZU=-2"MZ <0 (42)

where Z=1z U]7 and M= [U(;’ (ﬂ Since the matrix M is
the positive semi-definite, Eq. (42) is negative semi-definite.
From the above equation, define W, (Z(r)

W,y (Z(7)) =0 F2470< -, (44)

Then, lim#W;(t)=0 by Barbalat lemma®’. That is,
50, E:(gmand U0 as t—co. Therefore, the SMC
control system that considers the unknown friction
uncertainty and the approximation error can have the
asymptotic stability and good robustness to the disturbance.
The schematic diagram of the proposed control system
is depicted in Fig. 3.
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Uncertainty
RFNN Estimator .
L r,
A ¢ é Me . Ball-scrow Systems q
—>C Controllor with Nolines
Friction

Friction
State Observer

¢, Oy

Fig. 3 Schematic diagram of the proposed control
system

3. Results of Simulation and
Experiment

The simulation and experiment are executed for the
verification of the precision tracking control of a mechanical
servo system, which is composed of ball-screw and DC
servo motor as shown in Fig. 4. A schematic diagram and
photograph the mechanical servo system are depicted in
Fig. 4 and Fig. 5, respectively. The identified system

parameters through experiments are given in Table 1 and

Encoder
l » Torgue sensor

I

Fig. 4 Schematic diagram of the mechanical servo
system

TSI ff/v,l

Fig. 5 Photograph of the mechanical servo control
system
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the specifications of the system components are also given
in Table 2. The identification process of the dynamic
friction parameters is omitted in this paper. The radian
position of the mechanical servo system is obtained by
the precise encoder coupled with the DC motor shaft.

3.1 Results of simulation

To investigate the effectiveness the proposed control
system, three control schemes are designed; a sliding
mode controller (SMC), a sliding mode controller with
friction state observer (SOB) and a sliding mode controller
using RFNN and friction state observer with adaptive
robust estimator (SOB+RFNR). Moreover, the following

Table 1 Parameters of ball-screw and friction model

Symbol Value

J 0.246 kgm?

T 0.088 Nm

T, 0.11 Nm

és 0.056 rad/sec

ay 86.4 Nm/rad

o 4.7 Nmsec/rad
torque constant 0.3 Nm/A
amplifier gain 272 AV

Table 2 Specification of system components of the
control system

Item Specification
IBM PC Pentium II, MS-DOS,
C-language
Data Acquisition DRS8330,
board DA resolution : 12 bits
Encoder counter PCL-833Resolution : 32bits
board
Motor driver FDD-106PD
DC servo motor 300W, 3000rpm
Encoder ITD 21 B14,
resolution 10000 pulse/rev
Ball-screw THK, CO grade




=S E 7| AEE =2 Vol.18 No.1 2009. 2.

cases are tested in the simulation including nominal case

1 {Z;c,), and friction parameter variation case 2:

Case 1:

Case 2: 7, =2% 1), i=cs and o, =2%0,,i=0,1,23

i

T = T, i=c¢s anda—o i=0,1,2,3

The simulation is carried out using the ‘Matlab” package.
gy = 0.2 Xexp(2r X 0.3} Xsin(2r % 0.05¢) is chosen as a
command input in the simulation. The

RFNN has two, five, five, and one neuron at the input,
membership, rule and output layers, respectively. The
Gaussian function and the connecting weights are initialized
with the maximum value of each input and the random
number via some trials in order to prevent the divergence
of their outputs.

First, for case 1, Fig. 6 shows the tracking response
when SMC is applied to the mechanical servo system
with normal friction model. It can be shown that the
position tracking performance is very poor since the
friction disturbs the position performance in low velocity
and low control torque. Fig. 7 and 8 show the tracking

0.26

.20 e CSETTITENG NPT

- Cratput

015 |
010 ¢
0.05
0.00
-0.08
eI
Q1

rad

S

.20

-0.25 + i N
[ 5 10 15 20
Time (seg)

Fig. 6 Simulated results of the SMC control system:

tracking
0.25
0.20 - Command input
oask [\ Output
6.10
008 b -
B owl/
0,05 [
-0.10 |-
0,16 |
.20 -
0.28 N
a s 20

Time (sec)

Fig. 7 Simulated results of the SOB contwl system for
the nominal system: tracking responses
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responses of the SOB and SOB+RFNR control system
where the tracking performances are significantly improved
than the previous result under the same controller para-
meters as the SMC control system. This reason is that the
friction state observer compensates the friction torque in
low level of the position ranges as shown in Fig. 8 and
10. Therefore, it is proven that the proposed friction state
observer can estimate the unknown friction state very
well. The tracking errors of the SOB and SOB+RFNR

JUUY

o & 10 15 20
Time (se0)

Fig. 8 Simulated results of the SOB control system for
the nominal system: z and 2

0.25

0.20

Command input
~~~~~ Cutput

018 b
Q.10
0.0 3

-0.086 -
00
A0S
LA b

o2 . " N
025 b + 0 15 20

Time (sec)

Fig. 9 Simulated results of the SOB+RFNR control
system for the nominal systern: tracking responses

z

sz _hat

X

10
Time (sec)

20

Fig. 10 Simulated results of the SOB+RFNR control

system for the nominal system: z and Z
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0.0002 |

e SOBHRFNR

E 0.0000 }- - -

-0.0002

-0.0004

. L .
0 5 10 18 20
Time (sec)

11 Simulated results of the SOB+RFNR control
system for the nominal system: tracking errors

Fig.

0.04

0.03

0.02

0.01 |y

rad

0.00

-0.01

-0.02

~0.03 -

Time (sec)
Fig. 12 Simulated results of the SOB control system
for the disturbed system: z and Z

0.04

0.03 }

0.02 |-

0.01 | S - - A
0.00 ¥
~0.01 -

-0.02 i

tad

-0.03 |

«0.04 L S 1
Q 5 10 15 20
Time (sec)

Fig. 13 Simulated results of the SOB+RFNR control
system for the disturbed system: z and Z

control system are decreased in very low value due to the
friction state observer. Next, for case 2, to investigate the
performance of the adaptive robust estimator, the simulation
for a perturbed friction system is carried out under the
condition of the same controller parameters like the previous
one. In Fig. 12 and 13, the estimation performance for
the friction state of the SOB control system is deteriorated
than that of the SOB+RFNR control system due to its
lack of the adaptation property for the uncertainty. Thus,
it can be known that the friction state observer without
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14 Simulated results of the SOB and SOB+RFNR
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errors
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Fig. 15 Simulated results of the SOB / SOB+RFNR
control system for the disturbed system: control
input

containing robust term cannot cover the friction parameter
variations. Therefore, the tracking error of the SOB+RFNR
control system is significantly decreased comparing with
the SOB control system as shown in Fig. 14 under the
condition that the control input of both control system is

similar as shown in Fig. 15.

3.2 Results of Experiment

The experiment results are provided to demonstrate the
effectiveness of the proposed SOB+RFNR control system.
The control algorithms are programmed in ‘“Turbo-C’
language in DOS-mode and the control signals are trans-
mitted into the DC motor drive through the DR8330 data
acquisition board. The position information of the mechanical
servo system is transmitted into the computer through the
PCL-833 encoder counter board. The sampling rate is set
to be 4ms in order to consider the calculation burden on

the online training and updating parameters of the RFNN,
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calculation of SOB+RFNR controller, calculation of the
friction state observer and adaptive error estimator.

In the experiment, to investigate the effectiveness the
proposed control system, three control schemes are designed
like the previous simulations SMC, SOB, and SOB+
RFNR control system. The command input is chosen by
g = 0.2 X exp{2r < 0.3¢) Xsin (27 >0.05¢). The RFNN has
also two, five, five, and one neuron at the input, member-
ship, rule and output layers, respectively. The common
controller’s parameters such as ¢, ¢, and 3 are set to be
same values in each control system. The friction parameters
of the SOB and SOB+RFNR controller are also set to be
same values. The command input and obtained position
and control input of the SMC control system are shown
in Fig. 16-17. The position tracking performance of the
SMC control system is very poor like simulation. If we
increase the controller’s gains of the SMC to improve
the tracking performance, the chattering due to the friction
dynamics will be greatly increased, and it causes the wear
of the motor. Also the stability of the entire control

0.08

——— Command input

.02 <.+ Output
B
0.04 i 1
o s 10 15 20
Time (sec)
Fig. 16 Experimental results of the SMC control
system: tracking performance
0.03
0.02
0.01
§ 0.00 |-

10
Time (sec)

15 20

Fig. 17 Experimental results of the SMC
system: control input

control
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system can be worsened and the actuator saturation or
uncontrollable dangerous situation that often appears in
feedback control system is possible to be occurred. Since
this trial is not desirable to real implementations, it can
be concluded that the SMC control system without friction
observer is not appropriate to be used to control the precise
friction dynamics. In case of the SOB and SOB+RFNR
control system, the tracking errors are greatly decreased
by virtue of the friction state observer like the results in
simulation as shown in Fig. 18-21. The control inputs

take the appropriate values though small chatterings in

Command input

>>>>>> Output

rad

G 15

TFime (sec)

20

Fig. 18 Experimental results of the SOB control system:

tracking performance

0.025

0.000 H ]

3
¥
§

-0.0286

-0.080
o]

20
Time (sec)

Fig. 19 Experimental results of the SOB control system:

control input

Command input

------ Output

rad

10
Time (sec)

20

Fig. 20 Experimental results of the SOB+RFNR control
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Fig. 21 Experimental results of the SOB+RFNR control
system: control input
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Fig. 22 Tracking errors of the SOB and SOB+RFNR
control system
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Fig. 23 Estimation of the friction state z of the SOB
and SOB+RFNR control system

the turning direction of ball-screw appear in it. However,
since the measured friction parameters in Table 1can be
varied as operating conditions and can be different to the
real values, the chosen friction parameters of each controller
cannot be also said to the optimal values.

Therefore, the robust control using the RFNN estimator
and adaptive approximation error estimator have to be

considered. The experiment to examine the In Fig. 23, it
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Fig. 24 Estimation of the lumped uncertainty U of the
SOB+RFNR control system

is thought that the magnitude of the estimated friction
state, z, of the SOB+RFNR control system is small than
that of the SOB control system since most of uncettainty
of the friction is compensated by the uncertainty error
estimator in Eq. (41). The estimated value of the lumped
system uncertainty including frictional uncertainty is
presented in Fig. 24, robustness to these uncertainty shows
that the tracking error of the proposed SOB+RFNR control
system when compared with SOB control system is greatly
decreased even though the tracking error of the SOB
system is small as shown in Fig. 22. Therefore, it can be
known that the proposed control system is very robust to
uncertainty caused by the variations of the friction para-
meter. Even though the friction state observer can estimate
the immeasurable friction state of the mechanical servo
very well in nominal case, it cannot treat efficiently the
variations of the friction parameter, which is similar to the
pattern of the control input shown in Fig. 21. Therefore,
it is concluded that the adaptive error estimator must be
necessarily considered in order to obtain more precise

position tracking performance in low velocity range.

4, Conclusions

In this paper, the adaptive robust sliding mode control
using RFNN and uncertainty estimator is proposed to
estimate the unknown friction state and variations of the
friction parameter of the mechanical servo system for the
precise position tracking performance. First, the friction

state observer is designed to estimate unknown state of
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the LuGre dynamic friction model. Next, to estimate the
variations of the friction parameters, the online RFNN
algorithm combined with sliding mode control is also
designed to compensate the friction uncertainty. Finally,
the adaptive error estimator is designed for the estimation
error caused by the approximation by the RFNN. Some
simulated and experimental results for the mechanical
servo system are provided to demonstrate the effectiveness
of the proposed control scheme. It is shown that the
proposed control scheme guarantees the robustness to the
frictional uncertainty and the precise position tracking
performance in micro mechanical system.

It is expected that the proposed control scheme of this
paper will be very usefully applied to the micro contacted
mechanical system such as efectrical mechanical actuators,
which are recently often reported in researches of the
precise actuator systems.
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