• Title/Summary/Keyword: robust optimization problem

Search Result 252, Processing Time 0.022 seconds

OPTIMALITY CONDITIONS AND DUALITY IN NONDIFFERENTIABLE ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.371-377
    • /
    • 2015
  • We consider a nondifferentiable robust optimization problem, which has a maximum function of continuously differentiable functions and support functions as its objective function, continuously differentiable functions as its constraint functions. We prove optimality conditions for the nondifferentiable robust optimization problem. We formulate a Wolfe type dual problem for the nondifferentiable robust optimization problem and prove duality theorems.

ON DUALITY THEOREMS FOR ROBUST OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Kim, Moon Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.723-734
    • /
    • 2013
  • A robust optimization problem, which has a maximum function of continuously differentiable functions as its objective function, continuously differentiable functions as its constraint functions and a geometric constraint, is considered. We prove a necessary optimality theorem and a sufficient optimality theorem for the robust optimization problem. We formulate a Wolfe type dual problem for the robust optimization problem, which has a differentiable Lagrangean function, and establish the weak duality theorem and the strong duality theorem which hold between the robust optimization problem and its Wolfe type dual problem. Moreover, saddle point theorems for the robust optimization problem are given under convexity assumptions.

OPTIMALITY CONDITIONS AND DUALITY IN FRACTIONAL ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee;Kim, Gwi Soo
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.345-349
    • /
    • 2015
  • In this paper, we consider a fractional robust optimization problem (FP) and give necessary optimality theorems for (FP). Establishing a nonfractional optimization problem (NFP) equivalent to (FP), we formulate a Mond-Weir type dual problem for (FP) and prove duality theorems for (FP).

ROBUST DUALITY FOR NONSMOOTH MULTIOBJECTIVE OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Kim, Moon Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • In this paper, we consider a nonsmooth multiobjective robust optimization problem with more than two locally Lipschitz objective functions and locally Lipschitz constraint functions in the face of data uncertainty. We prove a nonsmooth sufficient optimality theorem for a weakly robust efficient solution of the problem. We formulate a Wolfe type dual problem for the problem, and establish duality theorems which hold between the problem and its Wolfe type dual problem.

ON SUFFICIENCY AND DUALITY FOR ROBUST OPTIMIZATION PROBLEMS INVOLVING (V, ρ)-INVEX FUNCTIONS

  • Kim, Moon Hee;Kim, Gwi Soo
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.265-269
    • /
    • 2017
  • In this paper, we formulate a sufficient optimality theorem for the robust optimization problem (UP) under (V, ${\rho}$)-invexity assumption. Moreover, we formulate a Mond-Weir type dual problem for the robust optimization problem (UP) and show that the weak and strong duality hold between the primal problems and the dual problems.

A Robust Design Using Approximation Model and Probability of Success (근사모델 및 성공확률을 이용한 강건설계)

  • Song, Byoung-Cheol;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.3-11
    • /
    • 2008
  • Robust design pioneered by Dr. G. Taguchi has been applied to versatile engineering problems for improving quality. Since 1980s, the Taguchi method has been introduced to numerical optimization, complementing the deficiencies of deterministic optimization, which is often called the robust optimization. In this study, the robust optimization strategy is proposed by considering the robustness of objective and constraint functions. The statistics of responses in the functions are surrogated by kriging models. In addition, objective and/or constraint function is represented by the probability of success, thus facilitating robust optimization. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

  • PDF

A Robust Optimization Using the Statistics Based on Kriging Metamodel

  • Lee Kwon-Hee;Kang Dong-Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1169-1182
    • /
    • 2006
  • Robust design technology has been applied to versatile engineering problems to ensure consistency in product performance. Since 1980s, the concept of robust design has been introduced to numerical optimization field, which is called the robust optimization. The robustness in the robust optimization is determined by a measure of insensitiveness with respect to the variation of a response. However, there are significant difficulties associated with the calculation of variations represented as its mean and variance. To overcome the current limitation, this research presents an implementation of the approximate statistical moment method based on kriging metamodel. Two sampling methods are simultaneously utilized to obtain the sequential surrogate model of a response. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method. Then, the simulated annealing algorithm of global optimization methods is adopted to find the global robust optimum. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

A Unified Approach to Discrete Time Robust Filtering Problem (이산시간 강인 필터링 문제를 위한 통합 설계기법)

  • Ra, Won-Sang;Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.592-595
    • /
    • 1999
  • In this paper, we propose a unified method to solve the various robust filtering problem for a class of uncertain discrete time systems. Generally, to solve the robust filtering problem, we must convert the convex optimization problem with uncertainty blocks to the uncertainty free convex optimization problem. To do this, we derive the robust matrix inequality problem. This technique involves using constant scaling parameter which can be optimized by solving a linear matrix inequality problem. Therefore, the robust matrix inequality problem does not conservative. The robust filter can be designed by using this robust matrix inequality problem and by considering its solvability conditions.

  • PDF

Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller (강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어)

  • Park, Young-Jin;Moon, Seok-Jun;Lim, Chae-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.