• Title/Summary/Keyword: robust condition

Search Result 753, Processing Time 0.023 seconds

Robust Three-step facial landmark localization under the complicated condition via ASM and POEM

  • Li, Weisheng;Peng, Lai;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3685-3700
    • /
    • 2015
  • To avoid influences caused by pose, illumination and facial expression variations, we propose a robust three-step algorithm based on ASM and POEM for facial landmark localization. Firstly, Model Selection Factor is utilized to achieve a pose-free initialized shape. Then, we use the global shape model of ASM to describe the whole face and the texture model POEM to adjust the position of each landmark. Thirdly, a second localization is presented to discriminatively refine the subtle shape variation for some organs and contours. Experiments are conducted in four main face datasets, and the results demonstrate that the proposed method accurately localizes facial landmarks and outperforms other state-of-the-art methods.

Robust Self-Tuning Regulator without Persistent Excitation (지속여기 조건이 없는 강인한 자조 안정기)

  • 김영철;이철희;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1207-1218
    • /
    • 1990
  • The lack of persistent excitation (PE) can be the reason of freezing in the recursive least square estimators and the covariance windup in the exponential weighted least square estimators. We present a theoretical analysis of these phenomena and a simple method to check the exciting condition in real time. Using these results and under some conditions such as slowly time varying Plant and a tracking problem for set point, a robust self-tuning regulators without PE is proposed. In this algorithm, when PE is not satisfied, only plant gain is estimated, and then the system parameters are corrected by it. It is shown that the gain adaptive scheme makes the robustness to be improved against modeling error, off-set, and correlated noise etc, by the results of analysis and simulations.

Frequency Domain Waveform Inversion Using $l_1$ -norm ($l_1$-norm을 이용한 주파수 영역 파형역산)

  • Pyun, Suk-Joon;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.118-123
    • /
    • 2007
  • A robust objective function in the frequency domain is applied to the acoustic full waveform inversion. The proposed objective function is defined as $l_1$-norm of residual wavefields in the frequency domain. Generally, the full waveform inversion is extremely sensitive to a number of factors such as parameterization, initial model, noise and so on. The numerical tests were performed for checking the sensitivity to attenuation and several noises. For the comparison with other objective functions, the conventional least-squares method and the logarithmic method were tested under the same condition. The synthetic data examples show that the proposed algorithm is more robust than the well-known methods.

  • PDF

Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method (최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계)

  • Jung Jong-Chul;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

A New Robust Output Feedback Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Matched Disturbance

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.206-213
    • /
    • 2014
  • In this note, a new robust nonlinear output feedback variable structure controller is first systematically and generally designed for the output control of more affine uncertain nonlinear systems with mismatched uncertainties and matched disturbance. A transformed integral output feedback sliding surface with a most simple form is applied in order to remove the reaching phase problems. The closed loop exponential stability and the existence condition of the sliding mode on the integral output feedback sliding surface is investigated with a corresponding output feedback control input in Theorem 1. For practical application the continuous implementation of the control input is made by the modified saturation function. The effectiveness of the proposed controller is verified through a design example and simulation study.

A Robust Algorithm for On-line Economic Dispatch (온라인 발전계획을 위한 강건한 경제급전 알고리즘)

  • Song, Kyung-Bin;Han, Seung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1111-1113
    • /
    • 1998
  • A robust economic dispatch algorithm involving transmission losses is proposed and investigated for a possibility of on-line applications. In this paper, the penalty factors are calculated directly from transposed Jacobian of load flow analysis with advantages of superiority to B-coefficients method based on its computation time and suitability for real time application since the approach is based on a current system condition. The proposed algorithm is systematically handling the generation capacity constraints with transmission losses. Implementation of the algorithm for IEEE systems and EPRI Scenario systems shows that computation time is enough to apply on-line economic dispatch to large power system and production cost is saved compared with the crude classical economic dispatch algorithm without considering transmission losses.

  • PDF

Nonlinear Goal Programming Approach for Robust Parameter Experiments (로버스트 변수모형의 비선형 목표계획법 접근방법)

  • Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-66
    • /
    • 2002
  • Instead of using signal-to-noise ratio, we attempt to optimize both the mean and variance responses using dual response optimization technique. The alternative experimental strategy analyzes a robust parameter design problem to obtain the best settings that give a target condition on the mean while minimizing its variance. The mean and variance are treated as the two responses of interest to be optimized. Unlike to the crossed array and combined array approaches, our experimental setup requires replicated runs for each control factor's treatment under noise sampling. When the postulated response models are true, they enable the coefficients to be estimated and the desired performance measure to be analyzed more efficiently. The procedure and illustrative example are given for the dual response optimization techniques of nonlinear goal programming.

Design of Hybrid Controller Using sliding Mode Controller and Fuzzy Controller (슬라이딩 모드 제어기와 퍼지 제어기를 이용한 하이브리드 제어기 설계)

  • Hwang, Kwang-Yong;Kwon, Cheol;Shin, Hyun-Seok;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.111-116
    • /
    • 1998
  • This paper proposes a robust control using a sliding mode controller and a fuzzy controller. Having the excellent transient response, the sliding mode controller has the poor steady state response, but the fuzzy controller has a good steady state reponse. A proposed controller combined these controllers has the quick response at the initial condition without the errors. The proposed robust nonlinear controller takes the advantage of the fuzzy controller and is the rapid and the stable response in conditions that the sliding mode controller keeps the errors at the steady state. The performance of proposed method is proved by simulation of the inverted pendulum.

  • PDF

Fuzzy Logic Speed Control Stability Improvement of Lightweight Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail.K;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2010
  • To be satisfied with complex load condition of electric vehicle, fuzzy logic control (FLC) is applied to improve speed response and system robust performance of induction traction machine based on indirect rotor field orientation control. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels of lightweight electric vehicle by means the vehicle used for passenger transportation. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. Our electric vehicle fuzzy inference system control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency and the robustness of the proposed control with good performances compared with the traditional PI speed control, the FLC induction traction machine presents not only good steady characteristic, but with no overshoot too.

Design of Robust Guaranteed Cost State Feedback Controller for Uncertain Discrete-time Singular Systems using LMI (선형행렬부등식을 이용한 불확실성 이산시간 특이시스템의 강인 보장비용 상태궤환 제어기 설계)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1429-1433
    • /
    • 2008
  • In this paper, we consider the design method of robust guaranteed cost controller for discrete-time singular systems with norm-bounded time-varying parameter uncertainty. In order to get the optimum(minimum) value of guaranteed cost, an optimization problem is given by linear matrix inequality (LMI) approach. The sufficient condition for the existence of controller and the upper bound of guaranteed cost function are proposed in terms of strict LMIs without decompositions of system matrices. Numerical examples are provided to show the validity of the presented method.