• Title/Summary/Keyword: robust adaptive control

Search Result 537, Processing Time 0.025 seconds

Robust Control of Trajectory Tracking for Hydraulic Excavator (유압 굴삭기의 궤적 추종을 위한 강인 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

An adaptive control and robust control of satellite (위성체의 적응제어 및 강인제어 연구)

  • 노영환;진익민;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1688-1691
    • /
    • 1997
  • In the time-invarient system, the adaptive controller was designed for the non-tracking error in the 1980's. In this study, the Model Reference Adaptive Control using on-line processing method is used to identify the coefficients of the model, and the Robust Controller (H.inf.) is designed to stabilize the rigid body and the flexible body of satellite, which can be perturbed due to disturbance, etc. The result obtained by H.inf. controller is compared with that of the PI(Proportional and Intergation) controller which is commonly used for stabilizing satellite.

  • PDF

Robust Adaptive Controller Free from Input Singularity for Nonlinear Systems Using Universal Function Approximators

  • Park, Jang-Hyun;Yoong, Pil-Sang;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.95.4-95
    • /
    • 2001
  • In this paper, we proposed and analyze an robust adaptive control scheme for uncertain nonlinear systems using Universal function approximators. The proposed scheme completely overcomes the singularity problem which occurs in the indirect adaptive feedback linearizing control. No projection in the estimated parameters and no switching in the control input are needed. The stability of the closed-loop systems is guaranteed in the Lyapunov standpoint.

  • PDF

Robust Adaptive Control for a Sort of Uncertain Systems (일련의 불확실한 시스템에 대한 강인한 적응제어)

  • 김진환;이정휴;함운철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.3
    • /
    • pp.22-30
    • /
    • 1993
  • In this paper, robust adaptive control algorithms which can be applied to unknown uncertain systems are suggested. Transform matrix for dividing states into "uncontrolled" states and "controlled" states and general searching procedure for the transform matrix which assign arbitrary n-1 eigen values for the uncontrolled subsystem of n-th orther single-input single-output systems of which state variables can be observable are also studied and utilized for the design of new-type controllers. We drived new-type control laws by using adaptive control theory and variable structure system and its stability is proved by using Lyapunov stability theory.

  • PDF

A Study on The Adaptive Robust Servocontroller (견실한 서보적응제어기에 관한 연구)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.513-525
    • /
    • 1990
  • This paper presents Adaptive Robust Servocontrol(ARSC) scheme, which is an explicit(or indirect) pole-assignment adaptive algorithm with the property of "robustness". It guarantees asymptotic regulation and tracking in the presence of finite parameter perturbations of the unknown plant(or process) model. The controller structure is obtained by transforming a robust control theory into an adaptive control version. This controller structure is combined with the model estimation algorithm which includes a dead-zone for bounded noise. It is proved theoretically that this combination of control and identification is globally convergent and stable. It is also shown, through a real-time simulation study, that the desired closed-loop poles of the augmented system can be assigned directly, and that the adjustment mechanism of the scheme tunes the controller parameters according to the assigned closed-loop poles.oop poles.

Sensorless Speed Control System Using a Neural Network

  • Huh Sung-Hoe;Lee Kyo-Beum;Kim Dong-Won;Choy Ick;Park Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.612-619
    • /
    • 2005
  • A robust adaptive speed sensorless induction motor direct torque control (DTC) using a neural network (NN) is presented in this paper. The inherent lumped uncertainties of the induction motor DTC system such as parametric uncertainty, external load disturbance and unmodeled dynamics are approximated by the NN. An additional robust control term is introduced to compensate for the reconstruction error. A control law and adaptive laws for the weights in the NN, as well as the bounding constant of the lumped uncertainties are established so that the whole closed-loop system is stable in the sense of Lyapunov. The effect of the speed estimation error is analyzed, and the stability proof of the control system is also proved. Experimental results as well as computer simulations are presented to show the validity and efficiency of the proposed system.

Decentralized Robust Adaptive Control for Robot Manipulators with Input Torque Saturation (입력 토크 포화를 갖는 로봇 매니퓰레이터에 대한 분산 강인 적응 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1160-1166
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive control scheme for robot manipulators with input torque saturation in the presence of uncertainties. The control system should consider the practical problems that the controller gain coefficients of each joint may be nonlinear time-varying and the input torques applied at each joint are saturated. The proposed robot controller overcomes the various uncertainties and the input saturation problem. The proposed controller is comparatively simple and has no robot model parameters. The proposed controller is adjusted by the adaptation laws and the stability of the control system is guaranteed by the Lyapunov function analysis. Simulation results show the validity and robustness of the proposed control scheme.

Robust Control of Robot Manipulator using Self-Tuning Adaptive Control (자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어)

  • 뱃길호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Lyapunov Based Adaptive-Robust Control of the Non-Minimum phase DC-DC Converters Using Input-Output Linearization

  • Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1577-1583
    • /
    • 2015
  • In this research, a combined adaptive-robust current controller is developed for non-minimum-phase DC-DC converters in a wide range of operations. In the proposed nonlinear controller, load resistance, input voltage and zero interval of the inductor current are estimated using developed adaptation rules and knowing the operating mode of the converter for the closed-loop control is not required; hence, a single controller can be employed for a wide load and line changes in discontinuous and continuous conduction operations. Using the TMS320F2810 digital signal processor, the experimental response of the proposed controller is presented in different operating points of the buck/boost converter. During transition between different modes of the converter, the developed controller has a better dynamic response compared with previously reported adaptive nonlinear approach. Moreover, output voltage steady-state error is zero in different conditions.

Robust adaptive control for unknown uncertain systems (미지의 불확실한 시스템에 대한 강인한 적응 제어)

  • 김진환;이정휴;정사철;함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.760-765
    • /
    • 1992
  • In this paper, robust adaptive control algorithms which can be applied to unknown uncertain systems are suggested. Transform matrix for dividing states into "uncontrolled" states and "controlled" states and general searching procedure for the transform matrix which assign arbitrary n-1 eigen values for the uncontrolled subsystem of n-th order single-input single-output systems is also studied and utilized for the design of new-type controllers. We derived new-type control laws by using adaptive control theory and variable structure system and its stability is proved by using Lyapunov stability theory. From computer simulation results, we can see that the proposed adaptive control algorithm is robust and stable.s robust and stable.

  • PDF