• Title/Summary/Keyword: robust $H_{\infty}$ constraint

Search Result 22, Processing Time 0.025 seconds

[ $H_2/H_{\infty}$ ] FIR Filters for Discrete-time State Space Models

  • Lee Young-Sam;Han Soo-Hee;Kwon Wook-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.645-652
    • /
    • 2006
  • In this paper a new type of filter, called the $H_2/H_{\infty}$ FIR filter, is proposed for discrete-time state space signal models. The proposed filter requires linearity, unbiased property, FIR structure, and independence of the initial state information in addition to the performance criteria in both $H_2$ and $H_{infty}$ sense. It is shown that $H_2,\;H_{\infty}$, and $H_2/H_{\infty}$ FIR filter design problems can be converted into convex programming problems via linear matrix inequalities (LMIs) with a linear equality constraint. Simulation studies illustrate that the proposed FIR filter is more robust against temporary uncertainties and has faster convergence than the conventional IIR filters.

Fuzzy $H^{\infty}$ Controller Design for Uncertain Nonlinear Systems (불확실성을 갖는 비선형 시스템의 퍼지 $H^{\infty}$ 제어기 설계)

  • Lee, Kap-Rai;Jeung, Eun-Tae;Park, Hong-Bae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.46-54
    • /
    • 1998
  • This paper presents a method for designing robust fuzzy $H^{\infty}$ controllers which stabilize nonlinear systems with parameter uncertainty adn guarantee an induced $L_{2}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Takagi and Sugeno's fuzzy models with uncertainty are used as the model for the uncertain nonlinear systems. Fuzzy control systems utilize the concept of so-called parallel distributed compensation(PDC). Using a single quadratic Lyapunov function, the stability condition satisfying decay rate and disturbance attenuation condition for Takagi and Sugeno's fuzzy model with parameter uncertainty are discussed. A sufficient condition for the existence of robust fuzzy $H^{\infty}$ controllers is then presented in terms of linear matrix inequalities(LMIs). Finally, design examples of robust fuzzy $H^{\infty}$ controllers for uncertain nonlinear systems are presented.

  • PDF

Design of the multivariable hard nonlinear controller using QLQG/$H_{\infty}$ control (QLQG/$H_{\infty}$ 제어를 이용한 다변수 하드비선형 제어기 설계)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.81-84
    • /
    • 1996
  • We propose the robust nonlinear controller design methodology, the $H_{\infty}$ constrained quasi - linear quadratic Gaussian control (QLQG/ $H_{\infty}$), for the statistically-linearized multivariable system with hard nonlinearties such as Coulomb friction, deadzone, etc. The $H_{\infty}$ performance constraint is involved in the optimization process by replacing the covariance Lyapunov equation with the Riccati equation whose solution leads to an upper bound of the QLQG performance. Because of the system's nonlinearity, however, one equation among three Riccati equations contain the nonlinear correction terms that are very difficult to solve numerically. To treat this problem, we use simple algebraic techniques. With some analytic transformation for Riccati equations, the nonlinear correction terms can be so eliminated that the set of a linear controller to the different operating points are designed. Synthesizing these via inverse random input describing function (IRIDF) technique, the final nonlinear controller can be designed.

  • PDF

Robust Control for the Rewritable Optical Disk Drives with Sinusoidal Disturbance of Uncertain Frequencies (불확실한 주파수의 정현파 외란이 있는 기록형 광 디스크 드라이브의 강인 제어)

  • Lee, Moon-Noh;Jin, Kyoung-Bog;Moon, Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • This paper presents an output feedback controller design method for uncertain linear systems with sinusoidal disturbance of uncertain frequencies. The controller needs to compensate for the performance deterioration due to the uncertain frequencies of sinusoidal disturbance. To this end, we introduce a virtual system including the dynamics corresponding to the uncertain frequencies and design a controller which minimizes the output difference between the virtual system and the closed-loop system. In other words, the controller is designed so that the closed-loop system approximates the virtual system. The feedback controller is achieved by solving an LMI optimization problem involving a robust $H_{\infty}$ constraint. The advantages of the proposed design method are examined by comparing it with a design method that only minimizes the $H_{\infty}$ norm of the transfer function between the sinusoidal disturbance and the output. The proposed design method is applied to the track-following system of rewritable optical disk drives and is evaluated through an experiment.

$H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR Filters for Discrete-time State Space Models

  • Lee, Young-Sam;Jung, Soo-Yul;Seo, Joong-Eon;Han, Soo-Hee;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.401-404
    • /
    • 2003
  • In this paper, $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filters are newly proposed for discrete-time state space signal models. The proposed filters require linearity, unbiased property, FIR structure, and independence of the initial state information in addition to the performance criteria in both $H_2$ and $H_{\infty}$ sense. It is shown that $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filter design problems can be converted into convex programming problems via linear matrix inequalities (LMIs) with a linear equality constraint. Simulation studies illustrat that the proposed FIR filter is more robust against uncertainties and has faster convergence than the conventional IIR filters. the conventional IIR filters.

  • PDF

An Extended Robust $H{\infty}$ Filter for Nonlinear Constrained Uncertain System (제약조건을 갖는 비선형 불확실 시스템을 위한 확장 강인 $H{\infty}$)

  • Seo, Jae-Won;Yu, Myeong-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2002-2004
    • /
    • 2003
  • 본 논문에서는 시스템의 모델 불확실성과 백색 가우시안이 아닌 $L_2$ 잡음이 존재하는 경우에 시스템 상태변수의 효과적인 추정을 위한 강인 필터를 제안한다. 제안된 필터는 적분이차제약조건(integral quadratic constraint)을 갖는 일반적인 비선형 불확실 시스템을 위해 선형근사화를 통하여 구성된다. 또한 제안된 필터의 중요한 특성인 변형된 $H{\infty}$ 성능 지수를 유도하고, 해석적 방법을 통해 제안된 필터의 잡음과 시스템 파라미터 불확실성에 대한 강인성을 분석하며, 시뮬레이션 결과를 통하여 제안된 필터가 추정치의 정확도를 효과적으로 향상시키는 것을 보인다.

  • PDF

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • Duy, Vo Hoang;Hung, Nguyen;Jeong, Sang-Kwun;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

H$\infty$ Controllers for Symmetric Systems: A Theory for Attitude Control of Large Space Structures

  • Kim, Jae-Hoon;Sim, Eun-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.92.3-92
    • /
    • 2001
  • This paper is concerned with robust attitude control of large space structures with collocated sensors and actuators. Since the transfer function matrices of such systems are symmetric, it seems suitable to employ symmetric controllers. This paper shows that it is true if no constraint is imposed on the orders of the controllers, but it is not true if the orders of the controllers are specified to be lower than that of the system to be controlled.

  • PDF

A Tracking Gain-Up Controller Design for Controlling the Shake of Actuator (엑츄에이터 흔들림 제어를 위한 트랙킹 Gain-Up 제어기 설계)

  • Jin, Kyoung-Bog;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.988-993
    • /
    • 2009
  • In this paper, we deal with a tracking gain-up controller design problem to control effectively the shake of tracking actuator after a track seek. A minimum tracking gain-up open-loop gain can be calculated by estimating the shake of tracking actuator and a desired transient specification is considered to diminish effectively the shake of actuator. A tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem with a regional stability constraint. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and is evaluated through the experimental results.