$H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR Filters for Discrete-time State Space Models

  • Lee, Young-Sam (Digital Media R&D Center, Samsung Electronics Co., Ltd.) ;
  • Jung, Soo-Yul (Digital Media R&D Center, Samsung Electronics Co., Ltd.) ;
  • Seo, Joong-Eon (Digital Media R&D Center, Samsung Electronics Co., Ltd.) ;
  • Han, Soo-Hee (School of Electrical Eng. and Computer Science, Seoul National Univ.) ;
  • Kwon, Wook-Hyun (School of Electrical Eng. and Computer Science, Seoul National Univ.)
  • Published : 2003.11.01

Abstract

In this paper, $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filters are newly proposed for discrete-time state space signal models. The proposed filters require linearity, unbiased property, FIR structure, and independence of the initial state information in addition to the performance criteria in both $H_2$ and $H_{\infty}$ sense. It is shown that $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filter design problems can be converted into convex programming problems via linear matrix inequalities (LMIs) with a linear equality constraint. Simulation studies illustrat that the proposed FIR filter is more robust against uncertainties and has faster convergence than the conventional IIR filters. the conventional IIR filters.

이 논문에서는 이산형 상태공간 모델에 대한 $H_2$, $H_{\infty}$, 및 혼합 $H_{\infty}$ FIR 필터를 선형행렬부등식(LMI)를 이용하여 제안한다. 제안되는 필터는 FIR 구조로서 $H_2$$H_{\infty}$ 관점에서의 성능기준을 만족함과 더불어 선형성 및 불편향성의 특성을 지니고, 초기 상태에 관한 정보를 필요로 하지 않는다. 그리고 FIR 구조로 인해 기존의 FIR 형태의 필터에 비해 불확실성에 대해 보다 견실하며 빠른 수렴성을 갖는다. 모의 실험을 통해 이러한 장점을 예시한다.

Keywords