• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.026 seconds

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

A Three-Degree-of-Freedom Anthropomorphic Oculomotor Simulator

  • Bang Young-Bong;Paik Jamie K.;Shin Bu-Hyun;Lee Choong-Kil
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • For a sophisticated humanoid that explores and learns its environment and interacts with humans, anthropomorphic physical behavior is much desired. The human vision system orients each eye with three-degree-of-freedom (3-DOF) in the directions of horizontal, vertical and torsional axes. Thus, in order to accurately replicate human vision system, it is imperative to have a simulator with 3-DOF end-effector. We present a 3-DOF anthropomorphic oculomotor system that reproduces realistic human eye movements for human-sized humanoid applications. The parallel link architecture of the oculomotor system is sized and designed to match the performance capabilities of the human vision. In this paper, a biologically-inspired mechanical design and the structural kinematics of the prototype are described in detail. The motility of the prototype in each axis of rotation was replicated through computer simulation, while performance tests comparable to human eye movements were recorded.

Independent Object based Situation Awareness for Autonomous Driving in On-Road Environment (도로 환경에서 자율주행을 위한 독립 관찰자 기반 주행 상황 인지 방법)

  • Noh, Samyeul;Han, Woo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • This paper proposes a situation awareness method based on data fusion and independent objects for autonomous driving in on-road environment. The proposed method, designed to achieve an accurate analysis of driving situations in on-road environment, executes preprocessing tasks that include coordinate transformations, data filtering, and data fusion and independent object based situation assessment to evaluate the collision risks of driving situations and calculate a desired velocity. The method was implemented in an open-source robot operating system called ROS and tested on a closed road with other vehicles. It performed successfully in several scenarios similar to a real road environment.

A Study on Current, Velocity, Position Gain Tuning Technique of Servo Position Controller using Simulation (시뮬레이션을 이용한 서보 위치제어기의 전류, 속도, 위치이득 동조기법에 관한 연구)

  • Park, Ki-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.634-640
    • /
    • 2011
  • When a servo position controller of a robot or a driving units is composed of a PID controller, servomechanism which is modelled is composed of current, velocity and position control loops. After this model is simulated, the technique operating gain of each controller is suggested. The model consists of current, velocity and position controllers from the inside to the outside gradually. Also, to combine velocity and position controllers with 2 order system, simulation is performed after current controllers are composed, which are able for current loop to work ideally. If a current controller is treated with constant, it is possible for velocity and position controller to consist of controller into 2 order system. The technique is verified by applying T-company servo motor which is much more applied to current, velocity and position controller robots.

Optimal Design of a 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.403-410
    • /
    • 2005
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

On a notion of sensor modeling in multisensor data fusion

  • Kim, W.J.;Ko, J.H.;Chung, M.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1597-1600
    • /
    • 1991
  • In this paper, we describe a notion of sensor modeling method in multisensor data fusion using fuzzy set theory. Each sensor module is characterized by its fuzzy constraints to specific features of environment. These sensor fuzzy constraints can be imposed on multisensory data to verify their degree of truth and compatibility toward the final decision making. In comparison with other sensor modeling methods, such as probabilistic models or rule-based models, the proposed method is very simple and can be easily implemented in intelligent robot systems.

  • PDF

Development of the automatic tunneling algorithm based on fuzzy logic for the microtunneling system

  • Han, Jeong-Su;Do, Jun-Hyeong;Zeungnam Bien;Janghyun Nam;Park, Taedong;Park, Kwang-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.676-678
    • /
    • 2003
  • Microtunneling techniques play a crucial role in the construction of pipelines. This paper shows the automatic tunneling algorithm of microtunneling system using fuzzy logic technology to assist operators to assure the quality of microtunneling construction. To have effective output value of fuzzy controller, we slightly modified the conventional defuzzification methods. The proposed automatic tunneling algorithm shows good tunneling results comparable with those of experts.

  • PDF

Reinforcement Leaming Using a State Partition Method under Real Environment

  • Saito, Ken;Masuda, Shiro;Yamaguchi, Toru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.66-69
    • /
    • 2003
  • This paper considers a reinforcement learning(RL) which deals with real environments. Most reinforcement learning studies have been made by simulations because real-environment learning requires large computational cost and much time. Furthermore, it is more difficult to acquire many rewards efficiently in real environments than in virtual ones. The most important requirement to make real-environment learning successful is the appropriate construction of the state space. In this paper, to begin with, I show the basic overview of the reinforcement learning under real environments. Next, 1 introduce a state-space construction method under real environmental which is State Partition Method. Finally I apply this method to a robot navigation problem and compare it with conventional methods.

  • PDF

The obstacle collision avoidance methods in the chaotic mobile robots

  • Youngchul Bae;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.591-594
    • /
    • 2003
  • In this paper, we propose a method to avoidance obstacle in which we assume that obstacle has an unstable limit cycle in the chaos trajectory surface. In order to avoid the obstacle, we assume that all obstacles in the chaos trajectory surface in which has an unstable limit cycle with Van der Pol equation. In this paper show also that computer simulation results are satisfy to avoid obstacle in the chaos trajectory with Chua's circuit equation of one or multi obstacle has an limit cycle with Van der Pol (VDP) efuation and compare to rate of cover in one robot which have random walk and Chua's equation.

  • PDF

Proposal of the Site-wise Abstract Image for the Web Image Resource Mining

  • Shigemori, Keisuke;Stejic, Zoran;Hirota, Kaoru;Yamaguchi, Toru;Takama, Yasufumi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.150-153
    • /
    • 2003
  • As the web is vast and disorderly, it is difficult to find desired information on the web. In particular, finding image resources (knowing where and what kind of images can be found on the web) is very difficult but challenging. As the first step towards the web resource mining, this paper reports the preliminary results of collecting a number of images by a web robot as well as presenting those meta information.

  • PDF