This paper suggests a new method for making a navigation path by using Bezier curve in order to improve the navigation performance used to avoid obstacles during a robot soccer game. We analyzed the advantages and disadvantages of both vector-field and limit-cycle navigation methods, which are the mostly widely used navigation methods for avoiding obstacles. To improve the disadvantages of these methods, we propose a new design technique for generating a more proper path using Bezier curve and describe its advantages. Using computer simulations and experiments, we compare the performance of vector-field navigation with that of Bezier curve navigation. The results prove that the navigation performance using Bezier curve is relatively superior to the other method.
Robot soccer is a challenging research area in which multiple robots collaborate in adversarial environment to achieve specific objectives. We designed and built the robotic agents for robot soccer, especially MIROSOT. We have been developing the appropriate vision algorithm, algorithm for ball tracking and prediction, algorithms for collaboration between the robots in an uncertain dynamic environment. In this work we focus on the development of ball tracking and prediction algorithm using Kalman filter. Robustness and feasibility of the proposed algorithm is demonstrated by simulation.
This paper presents a cell-based motion control strategy for soccer playing mobile robots. In the central robot motion planner, the planar ground is divided into rectangular cells with variable sizes and motion indices to which direction the mobile robot should move. At every time the multiple objects-the goal gate, ball, and robots-detected, integer values of motion indices are assigned to the cells occupied by mobile robots. Once the indices being calculated, the most desirable state-action pair is chosen from the state and action sets to achieve successful soccer game strategy. The proposed strategy is computationally simple enough to be used for fast robotic soccer system.
We have built a robot soccer system to participate in MIROSOT97. This paper represents hardware specification of our system and our strategy. We select a centralized on-line system for a soccer game. The paper explains hardware specifications of our system for later development. Also, the paper explains our strategy from two viewpoints. From the viewpoint of cooperation, some heuristic ideas are implemented. From the viewpoint of path plan, Cubic spline is used with cost function which minimized time, radius of curvature for smoothness, and obstacle potential field. Direct comparison will be realized in MIROSOT97.
본 논문은 인접한 두 로봇의 위치와 역할에 따라 로봇의 행동을 결정하는 퍼지 로직 중계자를 사용한 로봇 축구의 전략 및 전술을 제안한다. 기존의 Q 학습 알고리즘은 로봇의 수에 따라 상태의 수가 기하급수적으로 증가하여, 많은 연산을 필요로 하기 때문에 실시간 연산을 필요로 하는 로봇 축구 시스템에 알맞지 않다. Modular Q 학습 알고리즘은 해당 지역을 분할하는 방법으로 상태수를 줄였는데, 여기에는 로봇들 간의 협력을 위하여 따로 중재자 알고리즘이 사용되었다. 제안된 방법은 퍼지 규칙을 사용하여 로봇들 간의 협력을 위한 중재자 알고리즘을 구현하였고, 사용된 퍼지 규칙이 간단하기 때문에 계산 량이 작아 실시간 로봇 축구에 적합하다. MiroSot 시뮬레이션을 통하여 제안된 방법의 가능성을 보인다.
본 논문에서는 로봇축구의 식별을 위한 초기 패치(patch)값 및 조명의 변화량에 따른 제어변수의 자동설정 방법을 연구하였다. 먼저 패치값 자동설정을 위해 찾고자하는 국부적인 패치영역을 획득하여 RCB값으로 표본화하고, 기울기 연산자를 적용하여 화소의 기울기 값을 얻는다. 그리고 기울기 값으로부터 유효 패치영역과 YUV값을 구한다. 또한 YUV 성분 중 휘도성분을 측정하여 조명의 변화량에 따른 제어변수를 설정한다. 제안된 방법을 로봇축구 영상에 적용하여 초기 패치값을 설정하였고 경기 중 조명의 변화에 적응적인 패치값 검출이 가능함을 보였다.
The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent´s dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless ...
An intelligent miniature humanoid robot system is designed and implemented as a platform for researching walking algorithm. The robot system consists of a mechanical robot body, a control system, a sensor system, and a human interface system. The robot has 6 dofs per leg, 3 dofs per arm, and 2 dofs for a neck, so it has total of 20 dofs to have dexterous motion capability. For the control system, a supervisory controller runs on a remote host computer to plan high level robot actions based on the vision sensor data, a main controller implemented with a DSP chip generates walking trajectories for the robot to perform the commanded action, and an auxiliary controller implemented with an FPGA chip controls 20 actuators. The robot has three types of sensors. A two-axis acceleration sensor and eight force sensing resistors for acquiring information on walking status of the robot, and a color CCD camera for acquiring information on the surroundings. As an example of an intelligent robot action, some experiments on playing soccer are performed.
International Journal of Control, Automation, and Systems
/
제1권1호
/
pp.149-155
/
2003
In this study, we introduce the main ideas on the control and strategy used by the robot soccer team of the Universidad de Buenos hires, UBA-Sot. The basis of our approach is to obtain a cooperative behavior, which emerges from homogeneous sets of individual behaviors. Except for the goalkeeper, the behavior set of each robot contains a small number of individual behaviors. Basically, the individual behaviors have the same core: to move from the initial to-ward the target coordinates. However, these individual behaviors differ because each one has a different precondition associated with it. Each precondition is the combination of a number of elementary ones. The aim of our approach is to answer the following questions: How can the robot compute the preconditions in time\ulcorner How are the control actions defined, which allow the robot to move from the initial toward the final coordinates\ulcorner The way we cope with these issues is, on the one hand, to use ball and robot predictors and, on the other hand, to use very fast planning. Our proposal is to use planning in such a way that the behavior obtained is closer to a reactive than a deliberative one. Simulations and experiments on real robots, based on this approach, have so far given encouraging results.
한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
/
pp.321-324
/
2001
The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement Beaming is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement loaming is different from supervised teaming in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement loaming algorithms like Q-learning do not require defining or loaming any models of the surrounding environment. Nevertheless it can learn the optimal policy if the agent can visit every state-action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem, we suggest Adaptive Mediation-based Modular Q-Learning(AMMQL) as an improvement of the existing Modular Q-Learning(MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state space effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. This paper introduces the concept of AMMQL and presents details of its application into dynamic positioning of robot soccer agents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.