International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003

149

UBA-Sot : An Approach to Control and Team Strategy in Robot Soccer

Juan Miguel Santos, Hugo Daniel Scolnik, Ignacio Laplagne, Sergio Daicz,
Flavio Scarpettini, Héctor Fassi, and Claudia Castelo

Abstract: In this study, we introduce the main ideas on the control and strategy used by the ro-
bot soccer team of the Universidad de Buenos Aires, UBA-Sot. The basis of our approach is to
obtain a cooperative behavior, which emerges from homogeneous sets of individual behaviors.
Except for the goalkeeper, the behavior set of each robot contains a small number of individual
behaviors. Basically, the individual behaviors have the same core: to move from the initial to-
ward the target coordinates. However, these individual behaviors differ because each one has a
different precondition associated with it. Each precondition is the combination of a number of
elementary ones. The aim of our approach is to answer the following questions: How can the ro-
bot compute the preconditions in time? How are the control actions defined, which allow the ro-
bot to move from the initial toward the final coordinates? The way we cope with these issues is,
on the one hand, to use ball and robot predictors and, on the other hand, to use very fast plan-
ning. Our proposal is to use planning in such a way that the behavior obtained is closer to a reac-
tive than a deliberative one. Simulations and experiments on real robots, based on this approach,
have so far given encouraging results.

Keywords: Robot soccer, emergent cooperative behavior, planning by non-linear-optimization.

1. INTRODUCTION

Robot soccer provides an ideal environment for
demonstrating the difference between deliberative and
reactive behaviors. On the one hand, reactive behav-
iors are suitable for dynamic environments or tasks for
which a rapid answer must be found (i.e. real time
problems). On the other hand, deliberative behaviors
can be used in static environments or for tasks without
important time constraints. As a general criterion, re-
active behavior implies that there is a mapping be-
tween the state and action spaces, while deliberative
behavior implies that time is spent on planning. Using
this criterion, robot soccer appears to be ill-
conditioned for either of these approaches: firstly, be-
cause the state-action space is, in principle, infinite,
and secondly, because the robots need to respond very

Manuscript received February 28, 2002; revised Febru-
ary 28, 2002; accepted June 24, 2002. The UBA-SoT pro-
ject is supported in part by a grant from the Universidad de
Buenos Aires, corresponding to Res. 1227/2001, and in
part by Hewlett-Packard Argentina, Microsoft Argentina
and Intel Argentina.

Juan Miguel Santos, Hugo Daniel Scolnik, Ignacio
Laplagne, Sergio Daicz, Flavio Scarpettini, Héctor Fassi,
and Claudia Castelo are with the Departamento de
Computacion, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria,
Pabellon I, 1428 Cdad. de Buenos Aires, Argentina. (e-
mail: jmsantos@dc.uba.ar, scolnik@fd.com.ar, ilapla@
saluduno. com, sdaicz@dc.uba.ar, flavios@ciudad.com.ar,
h_fassi @ciudad.com.ar, castelo@visa.com.ar).

rapidly.

To deal with an infinite or huge state-action space,
we could try to cluster the space, and in this way to
reduce the size of the mapping needed to implement
reactive behaviors. However, it is not clear that a clus-
tering technique would allow us to group states easily
in a way that would allow us to assign a unique action
to each cluster. From the control point of view, very
small differences between states could lead to very
different actions (i.e. a small change in the location of
one robot could drastically change the optimum trajec-
tory of another robot). Moreover, even if such a clus-
tering were to exist, obtaining it might be as difficult
as calculating the mapping corresponding to the reac-
tive behavior.

Besides, the problem of the space cardinality affects
the feasibility of the learning methods. In general,
learning strategies are applied to reduced regions of
the state-action space or with biases that allow us to
cope with only a partial aspect of the problem (i.e.
how does a robot pass the ball to a teammate? Or how
does a robot choose among a restricted number of ac-
tions in bounded scenes? Etc.). Therefore, when reac-
tive behaviors, learned in this way, are applied using
the complete state-action space, their performance
could be seriously affected.

On the other hand, planning allows the robots to
take into account the complete state-action, at the cost
of potentially excessive delays.

Another interesting aspect of the robot soccer
problem is the collective behavior of the team. The

150 International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003

desired situation is that the team behaves in coopera-
tive way, that is, we want the individual behavior of
each member to contribute to an increase in perform-
ance of the team over time. There is no unique way to
obtain such cooperative behavior and each approach
has different advantages and drawbacks.

In this paper, we introduce the approach used for
the UBA-SoT (Universidad de Buenos Aires Soccer
Team) to deal with the control and strategy problems.

From the strategy point of view, we followed the
cooperative emergent approach. That is, we did not
include hand-coded strategies involving two or more
players during the game. Instead we put our efforts
into endowing each player with a suitable set of indi-
vidual behaviors, in order to achieve the cooperative
behavior of the team. For example, we see a pass be-
havior as emerging from two individual behaviors,
usually within two different robots, to pass the ball
(for one robot) and to locate itself for receiving a pass
(for the other robot, although it could perhaps be the
same robot that passed the ball).

Thus, each robot needs to know when it must start
each of its individual behaviors. In order to accom-
plish this, we associated preconditions with each be-
havior, which the robot must evaluate before acting.

From the control point of view, we used fast plan-
ning in such a way that the robot is able decide its ac-
tion in a very short time, quite close to the response
time of reactive behavior.

To complete the above approach, we must answer
the following questions: 1) How can the robot com-
pute preconditions in time? 2) How are the control ac-
tions defined, which allow the robot to move from the
initial coordinates toward the final ones?

The answer to the first question is that we need fast
prediction tools and models. Regarding the second
question, we need fast action computing, based on the
system state delivered by the vision system or by the
simulation server.

In the remainder of the paper we describe the man-
ner in which we answered these questions in our sys-
tem. In Section 2, we provide details about the indi-
vidual behaviors and their preconditions. In Section 3,
we comment on the prediction methods used to facili-
tate the evaluation of the preconditions. In Section 4,
we provide details about the optimization method
which was selected, and how it is used in order to sat-
isfy the time constraints.

2. COOPERATIVE BEHAVIOR EMERGING
FROM A SET OF INDIVIDUAL BEHAVIORS

The basis of our approach is to enable cooperative
behavior to emerge from homogeneous sets of indi-
vidual and simple behaviors {3]. Except for the goal-
keeper, the behavior set of each team robot has a small
number of simple and individual behaviors (for exam-

ple, ball passing, ball kicking, locating, ball intercept-
ing). Since there is no centralized control, coordina-
tion among individual behaviors of different robots is
carried out by a limited number of occasional mes-
sages.

Basically, the individual behaviors in each set have
the same purpose: to move from the initial coordinates
toward the target ones. The coordinates of a robot are
the Cartesian location, the deviation angle and the
wheel’s velocities. However, there are two aspects that
differentiate the behaviors. One aspect is the way in
which the robot defines some components of the target
coordinates. For example, depending on whether the
robot decides to kick or pass the ball to another team-
mate, the final wheel velocities or the deviation angle
are defined in different ways, although the robot must
reach the same Cartesian location.

The second and main difference among individual
behaviors is the conditions that must be satisfied for
activating each of them. We name these conditions,
behavior preconditions. Each behavior precondition
can be formed by one or more elemental preconditions,
such as: Is this robot the best placed to kick the ball
toward the goal? Or, is this robot the best placed to
pass the ball to a given teammate? Or, is this robot the
best placed to intercept the ball trajectory?, etc.

Thus, the behavior of the team depends on the
definition of the behavior set for each robot and a
limited number of occasional messages among robots.
However, the activation of each individual behavior
depends on the behavior-precondition associated with
it, and therefore the team behavior will depend on the
set of elemental preconditions and how they are com-
bined to form each behavior precondition.

Unfortunately, there is no standard method of
knowing what the individual behaviors should be or of
determining the behavior preconditions associated
with each one. This is a process which must be made
by-hand based on the knowledge that a designer has
about the task to be accomplished. We identified seven
candidates for individual behavior: Clear the ball,
Move to re-locate in defense, Receive and shoot the
ball (robot j from robot i), Kick toward the goal, Pass
the ball (from robot i to robot j), Move in order to re-
ceive the ball (robot j from robot i) and Move in order
to re-locate within the football pitch. In the same way,
we defined a set of ten elemental preconditions and
their combinations, in order to establish the behavior
preconditions. For example, before a robot can decide
to Clear the ball, it must evaluate four elementary pre-
conditions:

1) Are there any free paths between the ball and our
goal at time interval [t1,t2]?

2) Is the ball in our half of the field?

3) Is robot i the best placed to intercept the ball?

4) Is there any adversary robot which has a chance
of kicking the ball into our goal?

International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003 151

That is, if the system state satisfies these behavior
preconditions, then the robot can initiate the Clear the
ball behavior. Elementary preconditions 1, 2, and 4
allow the robot to know if its team is at risk of a rival
shooting toward the goal. The third one requires the
robot to evaluate whether it is the best placed for mov-
ing toward the ball and clearing it, compared with the
rest of the team.

A complete list of the elementary preconditions
that we defined is:

EP1) Are there any free paths between the ball and
the adversary goal at the time interval [t,,7,]?

EP2) Is robot i the best placed for reaching the ball
and kicking it toward the goal at some instant in the
interval [r,1,]?

EP3) Are there any free paths between the ball and
our goal at the time interval [r,,7,]?

EP4) Is the ball in our half of the field at time ¢?

EP5) Are there any messages from other teammates,
wanting to receive the ball?

EP6) Is robot i the best placed for reaching the ball
and passing it to robot j at some instant in the interval
{tl Jz] ?

EP7) Is robot j the best placed to receive a pass at
some instant in the interval [r;,,]?

EP8) Is robot i the best placed to intercept the ball
at some instant in the interval [r,r,]?

EP9) Are there any free paths between robot i and
robot j at time interval [r,,z,]?

EP10) Are there any adversary robots which have a
chance of kicking the ball toward our goal at the time
interval [1,,5,]?

Then, we associated these elementary preconditions
by means of logical operators to define the behavior
preconditions:

Clear the ball

PC: EP3 and EP4 and EP8 and EP10

Move in order to re-locate in defense

PD: EP3 and EP4 and not EP8

Receive and shoot the ball (robot j from robot i)

PR: EPS and EP1 and not EP4

Kick toward the goal

PK: EP1 and EP2 and not EP4

Pass the ball (from robot i to robot j)

PP: EP6 and EP7 and EP9

Move in order to receive the ball (robot j from robot i)

PM: EPS5 and PP (from robot j to robot k)

Move in order to re-locate

PL: none

The order in the list indicates the priority of each
individual behavior. This does not imply a sequential
evaluation.

3. PREDICTORS

In order to implement these preconditions we had to
use some tools based mainly on prediction. For exam-
ple, to solve the elementary precondition, “Are there
any free paths between the ball and our goal at time

interval (1,,4,) ?”, it is necessary to have a predictor

of the ball’s location and of the locations of the adver-
sary robots.

The camera provides snapshots of the ball and the
adversary-robots’ coordinates (x(z,), y(z,)), i: 0, 1, ...
and so the problem is to be able to use this data, which
is affected by noise, to predict their future positions.

A number of algorithms have been employed in dif-
ferent fields for smoothing noisy data, using least-
squares and functions such as polynomials, normal
splines, B-splines, negative exponentials, minimum
distance neighbors, cross correlation, outliers detec-
tton, wavelets, etc [4]. In the particular case of robot
soccer, some additional factors must be taken into ac-
count (i.e., sudden changes in the ball’s trajectory due
to impacts against obstacles such as the robots them-
selves or the walls surrounding the football field).

In order to take this particular problem into account,
a special algorithm was developed, which combines
different techniques for providing reliable estimations
of the ball’s coordinates. Essentially, we use a fast im-
plementation of the cross validation method, plus an
analysis of the time series for deciding which data
segments should be used for the prediction. The
choice of algorithms to include was based on reliabil-
ity and speed considerations, since this application re-
quires real time calculations.

On the other hand, each robot needs to have a pre-
dictor of its teammates’ positions (since at time ¢, each
robot on the team only knows what the velocities of
his other teammates are). The model used to predict
the coordinates of the other members of the team was
constructed using the kinematics equation:

x=x,+Ax,
y=y,+4y,

a=0o,—-valt,

where if v, #v

right

Ax= v_l * (sin{e, + va.At) ~sin(¢,) and
va

Ay= Xl_(_cos(ao +va.Ar) —cos(e,) ,
va

or if vleft = vright

Ax =vl.cos(er,).At and
Ay = vl *sin(¢,))Ar

152 International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003

and
va = vlcﬁ - vriglz/ ,
L
ol = Vier T Viiene ,
2

where L is the distance between the wheels.
4. THE CONTROL PROBLEM

4.1. Introduction

In order for the planning to be very fast, we defined
a cost function which has to be minimized using a
non-linear optimization technique. It can be formu-
lated within the framework of control theory. More
specifically, this is a discrete time control problem,
and therefore is equivalent to a nonlinear program-
ming problem. There exists a huge variety of algo-
rithms according to the kind of functions to be mini-
mized, the availability of partial derivatives and even-
tually of Hessians, the number of variables, the mem-
ory requirements, and the necessity of having close to
real-time solutions [5]. Constrained problems can be
dealt with using interior point techniques, penalty
functions (exact or not), Lagrangian techniques, etc.
Their main feature is that if the value function is zero
for the optimal values of the parameters, then the cor-
responding decision is feasible.

In order to solve this problem, we use a version of
Powell’s derivative-free minimization method that al-
lows the robot to make a decision about the action to
carry out [2].

The key to defining such a function is to consider a
small number of intermediate points along the trajec-
tory. At each intermediate point, the robot must decide
what its wheel velocity values should be and for how
long it should maintain these values. Between two
intermediate points, the robot will describe an arc, and
thus it will be easy to predict what the robot location
will be at any given time or, for a given point, to pre-
dict what the delay to reach it will be.

Additionally, the cost function allows us to insert
constraints, in order to avoid collisions, robot loca-
tions which would be outside of the football field, ac-
celeration and velocity overshooting.

For each intermediate point, the number of vari-
ables included in the cost function increases by two or
three, depending on whether the intervals — defined as
the elapsed time from one intermediate point to an-
other -, are fixed or variable.

In this way, an elemental precondition that says, “is
this robot the best placed to kick the ball towards the
goal?”, will be translated into a computation of the
minimum trajectory duration required by each team
member to reach the target with the desired angle and
wheel velocities.

However, since robot soccer environment is dy-
namic, the planned trajectories could rapidly become
obsolete. For this reason, we need a fast planning
method; that is, we need a very fast minimization
technique.

Additionally, to have a fast planning method allows
us to know what the wheel velocities should be, in or-
der to navigate along the chosen trajectory. That is,
the optimal values of the variables are precisely the
wheel velocities and elapsed time of each arc along
the trajectory. If the robot gets the velocities for the
first arc, it will be able to react in order to follow the
planned trajectory. In fact, the most likely situation is
the one in which the robot decides to use data corre-
sponding only to the first arc, discarding the remain-
ing ones due to the environmental changes.

Although the nature of the behaviors is deliberative,
if the robot can compute the appropriate action to take
in a negligible amount of time, the resulting behavior
will have the appearance of being reactive.

4.2. The cost function

The robot must reach the target coordinates which are

defined by the tuple <xy, yi, &, v*'

igh
, V"> where x;.

y; is the Cartesian location, ¢, is the deviation angle,

left right

and v” and v*" are the left and right velocities,

respectively. Analogously, the tuple <xo, yo, 0, v, ,

right
Yo

We could formulate a simple cost function for mini-
mizing and thus extracting the appropriate velocities
which would allow the robot to move from the current
to the target coordinates (those corresponding to the
minimum of the function). For example, we could
take some distance measurement (i.e. Euclidean) be-
tween both points and straightforwardly define such a
cost function. However, the more probable situation is
that the robot will not be able to reach the target by
setting its velocities only once.

To follow the correct trajectory from the current to
the target coordinates, the robot must know the veloc-
ity values (for the left and right wheels) at each point
over time. However, it is possible that the robot will
not need to change its velocities at each point along its
trajectory. If we consider that for each velocity pair,
the trajectory describes an arc from an initial interme-
diate point to a final intermediate point, then the com-

plete trajectory will be defined by a set of arcs from

I igh 1 igf
<xp, Yo, G VY, V>0 <x1, v, @, VI, V>

Therefore, there are, at present, two questions which
need to be answered: 1) How many arcs does the ro-
bot need to reach the target?, and 2) What is the length
of each arc?

Before answering these questions, we will formu-
late the problem in a more precise way. Between two
intermediate points there exists more than one trajec-

> represents the current coordinates of the robot.

International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003 153

tory which constitutes a solution to the problem, how-
ever, not all of these trajectories are feasible. That is,
the robot must not only reach the target, but it must
also avoid colliding against the walls surrounding the
football field or against other robots. Obviously, this
fact could affect the number of arcs (or the number of
decisions to be made) along the trajectory. To reflect
these constraints, we have to adequately define the
cost function, taking into account not only the distance
between the target and the current coordinates, but
also the potential wall and robot collisions. However,
it is necessary to incorporate some additional con-
straints into the analysis. On the one hand, we have to
limit the maximum and minimum velocities of the ro-
bots, in order to avoid solutions which do not have
any physical meaning. Therefore, the cost function
will have to have complete information about the sys-
tem state. On the other hand, we defined a constraint
to avoid sudden changes in the velocities correspond-
ing to neighboring arcs. That is, we want the velocity
changes (i.e. the estimation of the acceleration) not to
exceed a maximum value, which would otherwise
produce undesirable effects, such as wheel slipping.

Regarding the length of each trajectory, we added
an additional variable to the cost function to deal with
this matter. Briefly, the non-linear optimization me-
thod searches for a common arc interval, which satis-
fies the existence of a minimum value for the function
being evaluated. Clearly, there are at least two alterna-
tives which would allow us to to cope with the arc
elapsed time. The first one is to define, in advance, a
fixed time interval. In this case, we would be fixing
the number of arcs in the solution. The second one is
to define an additional variable for each arc in the tra-
jectory, however, in this case, we are increasing the
number of variables involved in the problem.

Again, we had to add constraints to avoid the
optimization method’s giving solutions with non-
acceptable time intervals. If the time interval for each
arc is shorter than the control cycle, the robot cannot
change its velocities in time. If the time interval is too
long, the solution is meaningless in the context of the
game.

A basic expression of the cost function is

NIP

Cost = Z(r _robot _ collisionj +r_ball _ collisionj +

i=1

+r_ accelerationj +r_wall _collision),

where j indexes the arcs along the trajectory and NIP
defines the number of intermediate points.

The r_robot_collision; term corresponds to the

cost of colliding with one or more robots along the
trajectory depicted by the arc j. Once the velocities of
the arc and the time interval are defined, then the par-
tial trajectory j for the robot can be included in the
cost function, and the cost component is computed

following geometrical criteria. A similar situation
happens for the r_ball_collision, and r_wall _

collision terms in the sum.
The r _acceleration; term checks, at each interme-

diate point, whether the change in the velocities ex-
ceeds a bound defined in advance. If this were to be
the case, an additional cost is added to the function
value.

Finally, constraints on the time intervals and veloci-
ties of the robots are added using a transformation (a
bounded function with first and second derivatives in
its entire domain) between the real space and a region
in which the values have physical meaning.

4.3. The number of intermediate points

Perhaps the main difficulty encountered when using
optimization methods (OM) to find trajectories is hav-
ing to set the required number of intermediate points
(NIP). NIP estimation is not easy to perform and we
had to consider the use of Artificial Neural Networks
(ANN) to satisfactorily handle most of the cases.

Although the elapsed time used by the OM is really
too short, it strongly depends on the number of vari-
ables included in the cost function and therefore, on
the NIP value being used. However, as the problem is
a real time one, the robot would need to decide which
action to perform before the vision system refreshes
the system state. In this way, the maximum NIP to be
used is constrained by the speed of the processor in
the computer platform. The problem is that the opti-
mization algorithm cloud not generate a solution for
the NIPs which is lower or equal to the maximum NIP.
In practice, this does not represent a major problem,
since those solutions, for which the value of the cost
function is not equal to 0, tend eventually to approach
a solution through the repeated calls to the OM over
time. That is, each time the vision system refreshes the
system state, a new call to the OM is made, but for a
new system state, which corresponds to a cost func-
tion with a Jower value than that of the previous one.

On the other hand, the repetition of the OM calls al-
lows the robots to search for solutions which take into
account the changes occurring within the system. We
call this the heuristic, incremental optimization
method.

Unfortunately, the value of NIP is unknown a priori.
That is, there is no analytical way of knowing, in ad-
vance, whether the optimization method will lead to a
solution (with a null cost value) for a given NIP value.
We tackled this problem using two alternative meth-
ods. The first method is simple and exact, and consists
of testing the optimization method with incremental
values of NIP. The second one involves estimating the
NIP value.

To implement the first alternative, we must take
care with the elapsed time necessary to carry out each

154 International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003

call to the optimization algorithm. For this reason, we
implemented these calls in parallel using a multi-
thread technique on a dual processor platform. This is
possible because each call is independent of the other
ones. In this way, if there exists a solution with a small
NIP, the remained threads are cancelled as soon as the
solution is obtained.

The second alternative involves estimating the NIP
for a given problem (i.e. system state and target coor-
dinates) using ANN. To train the ANN we defined 4
training sets of 5000 examples each (noted ANNI, ...,
ANN4). The input components represent the system
state and target coordinates. Each training set has a
different output component. For the first training set,
the output value was 1.0, if the NIP used to call to the
OM (and it found a solution with null cost) was 1. For
the second training set, the output was 1.0, if the cor-
responding NIP was 2. The third training set was con-
structed in a similar manner. For the fourth training set,
the output was 1.0, if the corresponding NIP was 4 or
more. That is, we used ANN as an oracle.

To obtain the input part of each example, we set
each one of the system variables randomly following a
uniform distribution.

To obtain the output part, we call the optimization
method incrementally, until the correct NIP (i.e. the
one that allows the optimization method to find a null
value for the cost function) is obtained.

The ANN used was a multilayer perceptron with
only one hidden layer and an output neuron [1]. Both
desired outputs and inputs were scaled to the range
[0.1].

Once the ANN was trained, we tested the networks
with independent testing sets of 1000 examples each
(created in a similar manner to the training set). We
obtained a generalization percentage of at least 75 %.
That is, we obtained the correct NIP for at least 750
examples from a set of 1000 examples.

During a game, when the robot needs to call the op-
timization method, it asks each ANN to forecast the
correct NIP. That is, it asks ANNT1 if the correct NIP is
1, ANN?2 if the correct NIP is 2, and so on. Ideally,
only one ANN produces an output of 1.0, while the
remaining ones give 0.0. In this case, the robot calls
the optimization algorithm with an NIP equal to the
ANN index whose output was 1.0. In the case where
all of the networks give an output of 0.0, the robot will
use an NIP value equal to 4, and in the case where
more than one network gives an output of 1.0, the NIP
used by the robot will be the maximum value of the
ANN index whose output was 1.0 (if more than one
network has an output value not equal to zero, we
choose the NIP that favors the existence of a solution
with minimum cost).

5. CONCLUSIONS

In this study, we introduced our approach to dealing
with the robot soccer problem for a team of 5 mobile
robots. We identified and depicted a set of 7 individual
behaviors, which define the activity of each robot dur-
ing the game. The exception was the goalkeeper,
which has a different definition. The basis of our ap-
proach is to obtain a cooperative behavior, which
emerges from homogeneous sets of individual behav-
iors that are activated when particular preconditions
are satisfied. We also presented a set of 10 elemental
preconditions and described how these are combined
to obtain each behavior precondition.

To evaluate each precondition we used predictors.
These predictors are based on models or statistical and
algorithmic methods. Additionally, we used a non-
linear optimization method, which minimizes a cost
function in order to find the optimum trajectory during
the game. Since robot soccer is a real time problem, we
had to use heuristic and algorithm parallelization tech-
niques, in order for the optimization technique to be
able to provide a solution in time. The heuristic part
was based on Artificial Neural Networks that were used
as an oracle, in order to set a parameter value used in
the optimization procedure. Although our method pro-
duces a trajectory plan for each control cycle, the dy-
namic characteristics of robot soccer result in only the
first step of each plan being used. This results in behav-
iors which appear more reactive than deliberative.

Much work remains to be done. Basically, our next
step will be based on the intensive application of learn-
ing that, as was mentioned in the introduction, will
likely lead to a myriad of research challenges.

REFERENCES

[1] D. E. Rumelhart and J. L. McClelland, Parallel
Distributed Processing, vol. 1, MIT Press, Cam-
bridge, 1986.

2] M. J. D. Powell, “An efficient method for finding
the minimum of a function of several variables
without calculating derivatives,” Computer. Joun-
nal, vol. 7, pp. 155, 1964.

[3] P. Maes, and R. A. Brooks, “Learning to coordi-
nate behaviors,” AAAI Boston, MA, pp. 796-802,
1990.

[4] W. Li, D. Naik and J. Swetits, “A data soothing
tchnique for pecewise convex/concave curves,”
SIAM Journal on Scientific Computing, vol. 17,
Number 2, pp. 517-537, 1996.

[5]1 M. H. Wright, “Direct search methods: once
scorned now respectable,” Proc. of the 1995 Dun-
dee Biennial Conference in Numerical Analysis, E.
D. E Griffiths and G. A. Watson, Addison Wesley
Longman, pp. 191-208, 1996.

International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003 155

Santos, Juan Miguel is an Assistant
Professor at the Departamento de
Computacién, Facultad de Ciencias
Exactas (FCEN) y Naturales of the
Universidad de Buenos Aires (UBA).
He obtained his Ph.D. degree in Com-
puter Science in 1999, from FCEN-

UBA and (DIAM-IUSPIM)-Universite de Aix-Marseille III,
France.

Scolnik, Hugo Daniel is a Full Profes-
sor at the Departamento de Compu-
tacion, Facultad de Ciencias Exactas y
Naturales of the Universidad de Buenos
Aires. He received his Ph.D. degree in
Mathematics in 1970, from the Univer-
sity of Zurich, Switzerland.

Daicz, Sergio is a Teaching Assistant
at the Departamento de Computacion,
Facultad de Ciencias Exactas y Natu-
rales of the Universidad de Buenos Ai-
res. He graduated in 2000, obtaining
the degree of Licenciado en Ciencias
de la Computaciéon (M.Sc) from
FCEN-UBA.

Laplagne, Ignacio is a Teaching Assis-
tant at the Departamento de Compu-
tacion, Facultad de Ciencias Exactas y
Naturales of the Universidad de Bue-
nos Aires. He graduated in 2002, ob-
taining the degree of Licenciado en
Ciencias de la Computaciéon (M.Sc)
from FCEN-UBA.

Scarpettini, Flavio was graduated in
2002, obtaining the degree of Licen-
ciado en Ciencias de la Computacién
(M.S.) at the Departamento de Com-
putacién (FCEN-UBA). He is mem-
ber of the Computational Intelligence
applied to Cooperative Robotics
Group.

Fassi, Héctor was graduated in 2002,
obtaining the degree of Licenciado en
Ciencias de la Computacién (M.S.) at
the Departamento de Computacién
(FCEN-UBA). He is a member of the
Computational Intelligence applied to
Cooperative Robotics Group.

Castelo, Claudia was graduated in
2002, obtaining the degree of Licen-
ciada en Ciencias de la Computacién
(M.S.) at the Departamento de Compu-
tacién (FCEN-UBA).

