• Title/Summary/Keyword: risk quantification

Search Result 186, Processing Time 0.026 seconds

Study on Quantification Method Based on Monte Carlo Sampling for Multiunit Probabilistic Safety Assessment Models

  • Oh, Kyemin;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Yang, Joon Eon;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.710-720
    • /
    • 2017
  • In Korea, many nuclear power plants operate at a single site based on geographical characteristics, but the population density near the sites is higher than that in other countries. Thus, multiunit accidents are a more important consideration than in other countries and should be addressed appropriately. Currently, there are many issues related to a multiunit probabilistic safety assessment (PSA). One of them is the quantification of a multiunit PSA model. A traditional PSA uses a Boolean manipulation of the fault tree in terms of the minimal cut set. However, such methods have some limitations when rare event approximations cannot be used effectively or a very small truncation limit should be applied to identify accident sequence combinations for a multiunit site. In particular, it is well known that seismic risk in terms of core damage frequency can be overestimated because there are many events that have a high failure probability. In this study, we propose a quantification method based on a Monte Carlo approach for a multiunit PSA model. This method can consider all possible accident sequence combinations in a multiunit site and calculate a more exact value for events that have a high failure probability. An example model for six identical units at a site was also developed and quantified to confirm the applicability of the proposed method.

Ecotoxicity Test of Wastewater by a Battery of Bioassay and Toxicity Identification Evaluation (다양한 시험생물종을 이용한 산업폐수 생태독성 평가 및 원인물질 탐색)

  • Ryu, Tae-Kwon;Cho, Jae-Gu;Kim, Kyung-Tae;Yang, Chang-Yong;Joung, Ki-Eun;Yoon, Jun-Heon;Choi, Kyung-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Toxicity identification and quantification are important factors to evaluate the effect of industrial effluent on the aquatic environment. In order to measure the potential and real toxicity of mixed chemicals in the effluents, the biological method (i.e., WET test) should be used as well as chemical analysis method. In this study, we conducted WET test for various kinds of industrial effluents using aquatic organisms such as water flea (Daphnia magna), algae (Pseudokirchneriella subcapitata), fish (Oryzias latipes, Danio rerio), and microorganism (Vibrio fisheri). In addition, we carried out chemical analysis and TIE (Toxicity Identification Evaluation) for effluents in order to identify the substances causing toxicity. Among the 30 kinds of wastewater, S13 showed the highest eco-toxicity and $Ca^{2+}$ and $Cl^-$ ion were suspected as major compounds causing toxicity for aquatic organisms. In order to confirm these suspected compounds, various confirmation procedures need to be carried out.

Building a Flood Database and Its Utilization to Reduce Flood Risk (수해시 피해경감을 위한 정보의 정비 및 활용)

  • An, Sang-Hyeok;Noguchi, M.
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.681-688
    • /
    • 2000
  • For the reduction of flood damage, it is necessary to analyse shelter activities of local residents and to publish information of floodings, In this paper the control factors of individual refuge activities which are major activities to save peoples lives against floodings have been estimated. Decision making factors for mental refuge activity by the questionnaire survey were classified into two categories: internal and external ones. Furthermore, the behaviour patterns of residents for flood risk related to geographical and social factors were derived by the quantification method n. Since spatial layered information using GIS were corrected and estimated to serve citizen's consensus due to flood disaster, it would aid reduction and minimization of flood risk.d risk.

  • PDF

Assessment of Risk in Wireless-Wired Network Based Control of Indoor Air Quality (IAQ) in Subway Stations (유무선 네트워크기반 지하철역사 공기질 제어의 위험성 평가)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • With increasing number of citizen using subway stations everyday, safety, health and comfort of passengers and occupants became an important social issue. Considering the fact that various physical variables and pollutants are related to indoor air quality (IAQ) which may cause health problem, IAQ need to be closely monitored and controlled in multiple locations in subway stations. This study is a continuation of the previous studies and delay induced in wireless-wired network is experimentally evaluated and the risk involved is assessed. In doing that, a key parameter is identified to be the network delay in different network media. Application of information-theoretic measure to assess the risk in network delay is then discussed. The idea is based on the general principles of engineering design and their applications to quantification of uncertainty in network delay. Experimental results show that more risk is involved in wireless data communication. Efficient and fast conversion of transmission data in both LonWorks/IP server and ZL converter is also noted.

A Risk Quantification Study for Accident Causes on Building Construction Site by Applying Probabilistic Forecast Concept (확률론적 추정 개념을 적용한 건설 공사 현장의 사고원인별 리스크 정량화 연구)

  • Yu, Yeong-Jin;Son, Kiyoung;Kim, Taehui;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2017
  • Recently the construction project is becoming large-sized, complicated, and modernize. This has increased the uncertainty of construction risk. Therefore, studies should be followed regarding scientifically identifying the risk factors, quantifying the frequency and severity of risk factors in order to develop a model that can quantitatively evaluate and manage the risk for response the increased risk in construction. To address the problem, this study analyze the probability distribution of risk causes, the probability of occurrence and frequency of the specific risk level through Monte Carlo simulation method based on the accident data caused at construction sites. In the end, this study derives quantitative analysis by analyzing the amount of risk and probability distributions of accident causes. The results of this study will be a basis for future quantitative risk management models and risk management research.

Formaldehyde Risk Assessment in Other Household Textile Products (가정용 섬유제품 중 기타 제품류의 폼알데하이드 위해성평가 연구)

  • Tae Hyun Park;Ji Hwan Song;Sa Ho Chun;Hee Rae Joe;Pil Jun Yoon;Ho Yeon Kang;Myeong Seon Ku;Jin Hyeok Son;Cheol Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.138-145
    • /
    • 2024
  • Background: Appropriateness issues have emerged regarding the non-application of hazardous substance safety standards for items classified as 'other textile products'. Objectives: Testing for formaldehyde (HCHO) and risk assessment were conducted on 'other textiles products' to provide reference data for promoting product safety policies. Methods: Testing was conducted on five items (102 products) classified as 'other textile products' according to relevant standards (textile products safety standards), and the risk of each product was assessed using the evaluation methodologies of the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) and European Chemical Agency (ECHA). Results: Out of the 102 products tested, HCHO was detected above the quantification limit in five. Based on these results, the screening risk assessment indicated that three products exceeded the criteria. Upon reassessing the emission and transfer rates of products exceeding the criteria, it was confirmed that there were no instances of exceeding the criteria. Conclusions: Risk assessment results can be used as supporting data for non-application of hazardous substance standards. However, it is deemed necessary to transition towards a management approach based on risks in order to addressing emerging trends such as convergence/new products.

A Probability Modeling of the Crime Occurrence and Risk Probability Map Generation based on the Urban Spatial Information (도시공간정보 기반의 범죄발생 확률 모형 및 위험도 확률지도 생성)

  • Kim, Dong-Hyun;Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.207-215
    • /
    • 2009
  • Recently, the research of the analysis of the crime spatial is increased by using the computer information technology and GIS (Geometric Information System) in order to prevent the urban crime so as to increase the urbanization rate. In this paper, a probability map formed by the raster is organized by the quantification of crime risk per the cell using the region property of the urban spatial information in the static environment. Also, a map of the risk probability is constructed based on the relative risk by the region property, the relative risk by the facility, the relative risk by the woody plant and the river, and so on. And, this integrated risk probability map is calculated by averaging the individual cell risk applied to the climatic influence and the seasonal factor. And, a probability map of the overall risk is generated by the interpretation key of the crime occurrence relative risk index, and so, this information is applied to the probability map quantifying the occurrence crime pattern. And so, in this paper, a methodology of the modeling and the simulation that this crime risk probability map is modified according to the passage of time are proposed.

A Basic Study for Quantification Model Development of Human Accidents on Construction Site in South Korea (한국 건설현장의 인명사고 리스크 정량화 모델 개발기초 연구)

  • Oh, June-Seok;Lee, Joo-Hyeong;Kim, Tae-Hee;Son, Ki-Young;Son, Seung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.45-46
    • /
    • 2019
  • Accident rate in domestic construction industry has been increased rapidly in every year. In particular, the rate of death has been shown very high compared with other industries. It means that safety activities performed by government is not effective in reducing the rate of accident. To solve these problems, the risk factors should be predicted in advance, controlled, monitored and managed from start of project to end of project. However, most studies have been conducted by using frequency of occurrence of accident and only listed the importance of risk. Therefore, the objective of this study is to provide basic material to develop risk quantifying model for human accidents on construction site in South Korea. In the future, it is expected to be used as a reference of study on developing safety mangement checklist in construction industry and model for forecasting accident.

  • PDF

A Study on the Quantification of Market-Government Response for Import Interruption Risk of Base Metal in Korea (베이스메탈 수입중단에 대한 민관 대응 리스크 물량 산정 연구)

  • Kim, Yujeong
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.3-9
    • /
    • 2021
  • In Korea, base metals such as lead, zinc, copper, tin, nickel, and aluminum have a polarized supply and demand structure. Despite the presence of world-class producers of lead, zinc, and copper, and their production is insufficient. And there are no domestic producers of tin, nickel, and aluminum, Thus, most of the domestic demand is dependent on imports. Therefore, it is necessary to prepare for the risk of supply interruption, such as the disruption of the import of base metals or interruption of domestic production. In this study, we estimated the quantity required to respond to the risk of import disruption, the quantity to which the market can respond, and the quantity to which the government needs to respond for six base metals (copper, lead, zinc, aluminum, nickel, and tin).

Generic and adaptive probabilistic safety assessment models: Precursor analysis and multi-purpose utilization

  • Ayoub, Ali;Kroger, Wolfgang;Sornette, Didier
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2924-2932
    • /
    • 2022
  • Motivated by learning from experience and exploiting existing knowledge in civil nuclear operations, we have developed in-house generic Probabilistic Safety Assessment (PSA) models for pressurized and boiling water reactors. The models are computationally light, handy, transparent, user-friendly, and easily adaptable to account for major plant-specific differences. They cover the common internal initiating events, frontline and support systems reliability and dependencies, human-factors, common-cause failures, and account for new factors typically overlooked in many PSAs. For quantification, the models use generic US reliability data, precursor analysis reports, the ETHZ Curated Nuclear Events Database, and experts' opinions. Moreover, uncertainties in the most influential basic events are addressed. The generated results show good agreement with assessments available in the literature with detailed PSAs. We envision the models as an unbiased framework to measure nuclear operational risk with the same "ruler", and hence support inter-plant risk comparisons that are usually not possible due to differences in plant-specific PSA assumptions and scopes. The models can be used for initial risk screening, order-of-magnitude precursor analysis, and other research/pedagogic applications especially when no plant-specific PSAs are available. Finally, we are using the generic models for large-scale precursor analysis that will generate big picture trends, lessons, and insights.