• Title/Summary/Keyword: rf-glow discharge

Search Result 51, Processing Time 0.024 seconds

Comparative Studies on Morphology of Low Temperature Ar-Plasma-treated Polymer Surfaces (알곤저온플라즈마처리된 고분자표면의 모폴로지에 대한 비교연구)

  • Seo Eun-Deock
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.35-41
    • /
    • 2004
  • Poly(ethylene terephthalate), polyimide(Kapton), and polypropylene surfaces were modified with argon low temperature plasma by RF glow discharge at 240m Torr, 40W to investigate the surface morphological changes due to the plasma treatment using atomic force microscopy(AFM). Analysis of the AFM images and Ra(average roughness) revealed that the plasma treatment resulted in significant ablation on the surfaces. The morphological changes and surface roughness, however, were different depending on material characteristics such as heat stability, presence of amorphous region, swelling phenomenon, and molecular structure of repeating unit. It was assumed that polypropylene due to its tertiary hydrogen was ablated easily compared to poly(ethylene terephthalate), and that polyimide was more resistant to the ablation than PET due to rigid skeleton of imide and stable phenyl ring structure.

DIAMOND-LIKE CARBON FILMS FOR ANTIREFLECTION COATINGS OF GERMANIUM INFRATED OPTICAL LENSES

  • Kim, Seong-Young;Lee, Sang-Hyun;Lee, Jai-Sung
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.461-466
    • /
    • 1999
  • Diamond-like carbon(DLC) films were directly deposited onto germanium(Ge) witness pieces and lenses by a capacitively coupled 13.56 MHz RF glow discharge plasma with $CH_4$ gas. The characterizations of DLC films were measured using a Raman and FTIR spectrometer. The configuration of Raman and FTIR spectra had a traditional shape. The IR transmittance was measured using an IR spectrophotometer. The maximum values of the IR transmission of Ge with the DLC/Ge/DLC, DLC/Ge/BBAR (broad band antireflection), DLC/Ge, and BBAR/Ge structures are 98%, 93%, 64%, and 63.5%, respectively, which come up to the theoretical values. The uniform DLC films were obtained by a rotation of the cathode at certain conditions.

  • PDF

Fabrication of Hydrogenated Amorphous Silicon Thin-Film Transistors for Flat Panel Display (평판 표시기를 위한 수소화된 비정질실리콘 박막트랜지스터의 제작)

  • Kim, Nam Deog;Kim, Choong Ki;Choi, Kwang Soo;Jang, Jin;Lee, Choo Chon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.453-458
    • /
    • 1987
  • Amorphous silicon thin-film transtors (TFT's) have been designed and fabricated on glass substrates. The hydrogenated amorphous silicon (a-Si:H) thin-film has been deposited by decomposing silane(SiH4) in hydorgen ambient by rf glow discharge method. Amorphous silicon nitride(a-Si:H) has been chosen as the gate dielectric material. It has been prepared by decomposing the mixed gas of silane(SiH4) and ammonia(NH3). The electrical properties and performance characteristics of the thin-film transistrs have been measured and compared with the requirements for the switching elements in liquid crystal flat panel display. The results show that liquid crystal flat panel displays can be fabricated using the thin-film transistors described in this paper.

  • PDF

Characteristic evaluations and production of triode magnetron sputtering system (Triode magnetron sputtering system의 제작 및 특성평가)

  • Kim, H.H.;Lee, M.Y.;Kim, K.T.;Yoon, S.H.;Yoo, H.K.;Kim, J.M.;Park, C.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.787-790
    • /
    • 2003
  • A rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of $E{\times}B$ field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

  • PDF

A Study on the Bathochromic of Poly(Ethylene Terephthalate) Fabrics by Plasma Polymerization (Plasma polymerization에 의한 PET 직물의 심색화에 관한 연구)

  • Cho, Hwan;Kim, Han-Ki;Jang, Byung-Yul;Lee, Kwang-Woo;Cho, In-Sool;Heo, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.194-205
    • /
    • 1993
  • Plasma polymerization in prepared glow discharge was carried out to improve the bathochromic of dyed PET fabrics by using silicon containing vinyl monomer in plasma polymerization equipment which consists of a pair of electrodes was connected to the 13.56MHz RF generator. The optimum condition for the bathochromic effect was investigated on various plasma polymeriztion parameters. By plasma polymerization used silicon containing vinyl monomer, the bathochromic of dyed PET fabrics was very enhanced. The optimum conditions on this equipment were as follows ; electrode distance : 3cm, discharge output : 60W, gas pressure : 0.3 Torr, monomer flow rate : 30㎤/min. plasma polymerization time : 60sec. The apparent strength of plasma polymerized PET fabrics was increased about 40∼47% with decreasing about 3 of L value.

  • PDF

Effects of Oxygen Plasma Treatment on the Wettability of Polypropylene Fabrics

  • Kwon, Young Ah
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.456-461
    • /
    • 2014
  • The objective of this study is to give PP(polypropylene) fabric a good affinity for water. Oxygen plasma was treated to PP fabrics in a commercial glow discharge reactor with different RF power, discharge pressure, and reaction time. The PP fiber surfaces were characterized by the measurement of contact angle and ESCA. A JEOL scanning electron microscope was used to observe the surface morphology of fibers. The spontaneous water uptake amount of PP fabrics was determined by the demand wettability test. To determine the effect of aging on the surface properties of $O_2$ plasma treated PP, all the above measurements of the samples were carried out after 1, 7, 30, 60, and 150 days. The results are as follows. The PP fiber surfaces treated by $O_2$ plasma treatment have a chemical composition that consisted of various oxygen containing polar groups. Consequently, the contact angles of the treated PP fibers decreased, which improved the water uptake rate of PP fabrics. Surface roughness of the treated PP affected the fabric wettabiity as well. Wettability of the treated PP decreased and leveled off with aging. The $O_2$ plasma treatment is a simple and effective method to increase the water uptake rate of PP fabrics.

Fabrication and Characteristics of Photoconductive Amorphous Silicon Film for Facsimile (팩시밀리용 비정질 실리콘 광도전막의 제작 및 특성)

  • Kim, Jeong-Seob;Oh, Sang-Kwang;Kim, Ki-Wan;Lee, Wu-Il
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.48-56
    • /
    • 1989
  • Contact-type linear image sensors for facsimile have been fabricated by means of rf glow discharge decomposition method of silane. The dependence of their electrical and optical properties on rf power, $SiH_4$ flow rate, ambient gas pressure, $H_2SiH_4$ ratio and substrate temperature are described. The a-Si:H monolayer demonstriated photosensitivity of 0.85 and $I_{ph}/I_d$ ratio of 100 unger 100 lux illumination. However, this monolayer has relatively high dark current due to carrier injection from both electrodes, resulting in low $I_{ph}/I_{dd}$ ratio. To suppress the dark current we have fabricated $SiO_2/i-a-Si:H/p-a-Si:H:B$ multilayer film with blocking structure. The photocurrent of this multilayer sensor with 6 V bias became saturated ar about 20nA under 10 lux illumination, while the dark current was less than 0.2 nA. Moreover, the spectral sensitivity of the multilayer film was enhanced for short wavelength visible region, compared with that of the a-Si:H monolayer. These results show that the fabricated photocon-ductive film can be used as the linear image sensor of the facsimile.

  • PDF

Atomic Force Microscopy and Specular Reflectance Infrared Spectroscopic Studies of the Surface Structure of Polypropylene Treated with Argon and Oxygen Plasmas

  • Seo Eun-Deock
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.608-614
    • /
    • 2004
  • Isotactic polypropylene (PP) surfaces were modified with argon and oxygen plasmas using a radio­frequency (RF) glow discharge at 240 mTorr and 40 W. The changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared (IR) microspectroscopy. Under our operating conditions, the AFM image analysis revealed that longer plasma treatment resulted in significant ablation on the PP surface, regardless of the kind of plasma employed, but the topography was dependent on the nature of the gases. Specular reflectance IR spectroscopic analysis indicated that the constant removal of surface material was an important ablative aspect when using either plasma, but the nature of the ablative behavior and the resultant aging effects were clearly dependent on the choice of plasma. The use of argon plasma resulted in a negligible aging effect; in contrast, the use of oxygen plasma caused a noticeable aging effect, which was due to reactions of trapped or isolated radicals with oxygen in air, and was partly responsible for the increased surface area caused by ablation. The use of oxygen plasma is believed to be an advantageous approach to modifying polymeric materials with functionalized surfaces, e.g., for surface grafting of unsaturated monomers and incorporating oxygen-containing groups onto PP.

Growth of polycrystalline 3C-SiC thin films for M/NEMS applications by CVD (CVD에 의한 M/NEMS용 다결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Kim, Kang-San;Jeong, Jun-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the growth conditions and characteristics of polycrystalline 3C-SiC (silicon carbide) thin films for M/NEMS applications related to harsh environments. The growth of the 3C-SiC thin film on the oxided Si wafers was carried out by APCVD using HMDS (hexamethyildisilane: $Si_{2}(CH_{3})_{6})$ precursor. Each samples were analyzed by XRD (X-ray diffraction), FT-IR (fourier transformation infrared spectroscopy), RHEED (reflection high energy electron diffraction), GDS (glow discharge spectrometer), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and TEM (tunneling electro microscope). Moreover, the electrical properties of the grown 3C-SiC thin film were evaluated by Hall effect. From these results, the grown 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therefore, the 3C-SiC thin film is suitable for extreme environment, Bio and RF M/NEMS applications in conjunction with Si fabrication technology.

The Chemical Structure of Phenyl Isothiocyanate Thin Films Fabricated by Plasma Polymerization Method (플라즈마 중합법에 의해 제작된 PHENYL ISOTHIOCYANATE 막의 화학적 구조)

  • Kim, Sung-O;Park, Bok-Kee;Kim, Du-Seok;Lee, Kyung-Sup;Lee, Jin;Lee, Duck-Chool
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.183-187
    • /
    • 1997
  • The Thin films were obtained by plasma polymerization of phenyl isothiocyanate. Polymerizations were carried out in rf(13.56 [MHz]) glow discharge generated in an inter-electrode capacitively coupled gas flow system. It was fecund that this monomer produces uniform films with a wide range of thicknesses, from hundreds of nanometers to tens of micrometers. The deposition rate appeared to be dependent on the substrate distance from the monomer inlet. The IR data revealed significant decrease in -NCS groups content in the polymer as compared with the monomer spectrum and indicated for the appearance of new absorption bands corresponding to the -CN and C-H aliphatic groups. The soluble fraction by GC was found to be composed of numerous low molecular-weight compounds.

  • PDF