• Title/Summary/Keyword: retrofitting method

Search Result 181, Processing Time 0.025 seconds

Experimental Study on the Shear Strengthening Effect of Cracked or Uncracked RC Columns with Carbon Fiber Sheets (균열 및 비균열 철근콘크리트 기둥의 탄소섬유시트 전단보강효과에 관한 실험적 연구)

  • Na, Jung-Min;Lee, Yong-Taeg;Kim, Seung-Hun;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.243-254
    • /
    • 2002
  • This study investigates the structural behavior of cracked or uncracked RC columns retrofitted with CFS and evaluates the shear retrofit performance through experiment. Experimental works were conducted for sixth specimens varied in the adhesion method of CFS, the ratio of shear reinforcement bar, and the existence of crack before retrofitting. Throughout cyclic test, the strength, stiffness, failure modes, and ductility are discussed. The test results show that the retrofitting method with CFS improve the shear strength and ductility. The crack width below 2mm, occurred before retrofitting, didn't reduce the shear strengthening effect.

Influence of Joint on Retrofitting Effect by Exterior Steel Frames of Existing RC Buildings (외부접합공법의 내진보강효과에 미치는 접합부의 영향)

  • Ahn, Choong Weon;Min, Chan Gi;Noh, Eun Choul;Han, Hong Soo;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.183-194
    • /
    • 2015
  • In this paper, Nonlinear Static Pushover analysis method(NSP) is proposed which apply to RC buildings reinforced by external retrofit for seismic performance. Based on previous analysis and research, NSP is more developed by connection nonlinearity according to shear resistance mechanism such as dowel and adhesive resistance as major shear resistance elements. According to the proposed method, structural analysis for example buildings was carried out to evaluate seismic performance of buildings. And, it was confirmed that depending on shear strain and characteristics of joint resistant of external retrofitting are different from internal retrofitting. Furthermore, the strength reduction coefficient of the anchor needs to be considered at the joint design.

Case study on the effects of retrofitting on changing structural dynamic characteristics by microtremor measurements and finite element analysis

  • Hadianfard, Mohammad Ali;Rabiee, Ramin;Sarshad, Azad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.965-977
    • /
    • 2015
  • Determination of dynamic parameters of a structure such as predominant frequency and damping ratio is one of the most important subjects in dynamics of structures. Different methods are used to determine predominant frequency. These methods are different in the cost, implement accessibility, accuracy, speed, applicability in different conditions, simplicity of calculations and required data accessibility. Calculation of damping ratio by using common experimental procedures is very difficult and costly, then it is assumed as a constant value in most calculations. Microtremor measurements and using spectral ratio method to determine the predominant frequency and damping ratio of structure is of interest in recent years. In this paper, as a case study, the effects of retrofitting on structural dynamic parameters of two four-story buildings by using microtremor measurements and also finite element analysis, is investigated. The results of this study show that microtremor measurements can be utilized to assess the improvement of dynamic behavior of the retrofitted structure and the effectiveness of the method of retrofitting.

Seismic Retrofitting of Cabinet Structures in Nuclear Power Plant (원자력 발전소 캐비닛구조물의 내진보강)

  • 이계희;김재민;김상윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper presents the methodologies for seismic retrofitting of cabinet equipment which can be employed to resolve the USI A-46 problem related to seismic qualification of old nuclear power plant. To obtain accurate dynamic characteristics of a cabinet structure, three types of structural modeling are introduced and the their free vibration modes are compared. Three types of seismic retrofitting scenarios, such as 1) the installation of bracing, 2) installation of damper, 3) installation of tuned mass damper(TMD), are established and evaluated for the decrease of ICRS(In Cabinet Reponse Spectrum). In the cases of 1) & 2), since the retrofitted structures show larger ICRS than that of the original structure, the careful considerations are need in the application of these methods. Though the installation of TMD shows the best retrofitting result, the construction of analysis model that indicate the accurate vibration modes of real structure is estimated the essential step of this retrofitting method.

Experimental assessment of post-earthquake retrofitted reinforced concrete frame partially infilled with fly-ash brick

  • Kumawat, Sanjay R.;Mondal, Goutam;Dash, Suresh R.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.121-135
    • /
    • 2022
  • Many public buildings such as schools, hospitals, etc., where partial infill walls are present in reinforced concrete (RC) structures, have undergone undesirable damage/failure attributed to captive column effect during a moderate to severe earthquake shaking. Often, the situation gets worsened when these RC frames are non-ductile in nature, thus reducing the deformable capability of the frame. Also, in many parts of the Indian subcontinent, it is mandatory to use fly-ash bricks for construction so as to reduce the burden on the disposal of fly-ash produced at thermal power plants. In some scenario, when the non-ductile RC frame, partially infilled by fly-ash bricks, suffers major structural damage, the challenge remains on how to retrofit and restore it. Thus, in this study, two full-scale one-bay, one-story non-ductile RC frame models, namely, bare frame and RC partially infilled frame with fly-ash bricks in 50% of its opening area are considered. In the previous experiments, these models were subjected to slow-cyclic displacement-controlled loading to replicate damage due to a moderate earthquake. Now, in this study these damaged frames were retrofitted and an experimental investigation was performed on the retrofitted specimens to examine the effectiveness of the proposed retrofitting scheme. A hybrid retrofitting technique combining epoxy injection grouting with an innovative and easy-to-implement steel jacketing technique was proposed. This proposed retrofitting method has ensured proper confinement of damaged concrete. The retrofitted models were subjected to the same slow cyclic displacement-controlled loading which was used to damage the frames. The experimental study concluded that the hybrid retrofitting technique was quite effective in enhancing and regaining various seismic performance parameters such as, lateral strength and lateral stiffness of partially fly-ash brick infilled RC frame. Thus, the steel jacketing retrofitting scheme along with the epoxy injection grouting can be relied on for possible repair of the structural members which are damaged due to the captive column effect during the seismic shaking.

Response of Bridge Piers Retrofitted by Stainless Steel Wire under Simulated Seismic Loading (내진 모사하중에 의한 스테인레스강 와이어 보강 교각의 응답)

  • Choi, Jun Hyeok;Kim, Sung Hoon;Lee, Do Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2009
  • In the present study, a new seismic retrofitting method that employs both a stainless steel wire mesh and a permeable polymer concrete mortar was proposed for reinforced concrete bridge piers with nonseismic design details. For this purpose, a total of six nonseismically designed bridge piers were tested under lateral load reversals. The test results reveal that nonseismically designed piers with lap splices need to be retrofitted to resist earthquake induced forces. In addition, it was proven that the proposed retrofitting method can be useful in improving the strength, stiffness, and energy dissipation capacities of bridge piers designed nonseismically. It is thus expected that the proposed method may provide an improved ductility capacity without sudden softening of strength for bridge piers excursing inelastic displacement range.

Experimental Method for Evaluating Debonding Strength of FRPs Used for Retrofitting Concrete Structures (콘크리트 휨부재 보강용 FRP의 부착성능 평가를 위한 실험방법 연구)

  • Utui, Nadia;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.36-41
    • /
    • 2011
  • This study proposes a experimental method to evaluate bonding strength of FRPs used for retrofitting concrete structures. Specimens are designed so that debonding failure of FRPs can be induced from reinforced concrete beams retrofitted with two layers of carbon and glass FRPs. And three-point loading tests are performed to see if debonding failure with proper debonding strength is observed from the specimens. The test results show that the tested beams are failed due to debonding of FRPs, therefore, the proposed test method is capable of evaluating debonding strength of FRPs using relatively small normal strength concrete beams.

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

Effectiveness of R/C jacketing of substandard R/C columns with short lap splices

  • Kalogeropoulos, George I.;Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.273-292
    • /
    • 2014
  • The effectiveness of a retrofitting method for concrete columns with particular weaknesses is experimentally evaluated and presented in this paper. Structural deficiencies namely the inadequacy of transverse reinforcement and short length of lap splices are very common in columns found in structures built prior to the 1960s and 1970s. Recent earthquakes worldwide have caused severe damages and collapses of these structures. Nevertheless, the importance of improving the load transfer capacity between the deficiently lap-spliced bars is usually underestimated during the strengthening procedures applied in old buildings, though critical for the safety of the residents' lives. Thus, the seismic performance of the enhanced columns is frequently overestimated. The retrofitting approach presented herein involves reinforced concrete jacketing of the column sub-assemblages and welding of the lap-spliced bars to prevent the splice failure and conform to the provisions of modern design Codes. The cyclic lateral loading response of poorly confined original column specimens with insufficient lap splices and the seismic behavior of the retrofitted columns are compared. Test results clearly demonstrate that the retrofitting procedure followed is an effective way of significantly improving the seismic performance of substandard columns found in old buildings.