• 제목/요약/키워드: retarded functional differential equation

검색결과 8건 처리시간 0.021초

CONTROL PROBLEMS FOR NONLINEAR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kim, Han-Geul
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.445-453
    • /
    • 2007
  • This paper deals with the approximate controllability for the nonlinear functional differential equations with time delay and studies a variation of constant formula for solutions of the given equations.

REGULARITY FOR FRACTIONAL ORDER RETARDED NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Cho, Seong Ho;Jeong, Jin-Mun;Kang, Yong Han
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1019-1036
    • /
    • 2016
  • In this paper, we study the existence of solutions and $L^2$-regularity for fractional order retarded neutral functional differential equations in Hilbert spaces. We no longer require the compactness of structural operators to prove the existence of continuous solutions of the non-linear differential system, but instead we investigate the relation between the regularity of solutions of fractional order retarded neutral functional differential systems with unbounded principal operators and that of its corresponding linear system excluded by the nonlinear term. Finally, we give a simple example to which our main result can be applied.

OPTIMAL PROBLEM OF REGULAR COST FUNCTION FOR RETARDED SYSTEM

  • Jong-Yeoul Park;Jin-Mun Jeong;Young-Chel Kwun
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.115-126
    • /
    • 1998
  • We study the optimal control problem of system governed by retarded functional differential $$ x'(t) = A_0 x(t) + A_1 x(t - h) + \\ulcorner\ulcorner\ulcorner_{-h}^{0} a(s)A_2 x(t + s)ds + B_0 u(t) $$ in Hilbert space H. After the fundamental facts of retarded system and the description of condition so called a weak backward uniqueness property are established, the technically important maximal principle and the bang-bang principle are given. its corresponding linear system.

  • PDF

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

Inverse problem for semilinear control systems

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Kwun, Young-Chel
    • 대한수학회보
    • /
    • 제33권4호
    • /
    • pp.603-611
    • /
    • 1996
  • Let consider the following problem: find an element u(t) in a Banach space U from the equation $$ x'(t) = Ax(t) + f(t,x(t)) + \Phi_0 u(t), 0 \leq t \leq T $$ with initial and terminal conditions $$ x(0) = 0, x(T) = \phi $$ in a Banach space X where $\phi \in D(A)$. This problem is a kind of control engineering inverse problem and contains nonlinear term, so that it is difficult and interesting. Thee proof main result in this paper is based on the Fredholm property of [1] in section 3. Similar considerations of linear system have been dealt with in many references. Among these literatures, Suzuki[5] introduced this problem for heat equation with unknown spatially-varing conductivity. Nakagiri and Yamamoto[2] considered the identifiability problem, which A is a unknown operator to be identified, where the system is described by a linear retarded functional differential equation. We can also apply to determining the magnitude of the control set for approximate controllability if X is a reflexive space, i.e., we can consider whether a dense subset of X is covered by reachable set in section 4.

  • PDF