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THE EXISTENCE AND UNIQUENESS OF SOLUTIONS
FOR LINEAR RETARDED FUNCTIONAL
DIFFERENTIAL EQUATION IN HILBERT SPACE

WEON-KEE KANG AND DONG-GUN PARK

1. Introduction

This paper is concerned with the existence and uniqueness of solu-
tions on the delay form functional differential equation

(1.1) dz(:) + Au(t) + Ayu(t — h)
+ /O a(—s)Au(t +s)ds =0, 0<Lt<T
—h
(1.2) u(0) = =, u(s) = y(s), 5 € [~h,0)

in a complex Hilbert space H, where a(—s) is a complex valued function
of bounded variation over an interval [—h,0].

Let H and V be complex Hilbert spaces such that V is a dense
subspace of H and the inclusion mapping V into H is continuous. The
norms of H and V are denoted by | - | and || - |{, respectively. Identifying
H with its antidual we may write V. C H C V*. For a couple of Hilbert
space V and H the notation B(V, H) denotes the totality of bounded
linear mappings of V into H, and B(H)= B(H, H).

Here, A is the operator associated with a sesquilinear form a(u,v)
which is defined in V' x V and satisfies Garding’s inequality

Re a(u,u) > c||lu|®.
Let A; and A, be operators in B(V, V*).
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Equations of the type (1.1} were invetigated by G. Di Blasio, K.
Kunisch and E. Sinestrari {2], {3], E. Sinestrari [11] and H. Tanabe
[12].

In {2] the initial value problem for the equations in Hilbert space
H was solved in the space of L? functions with values in H. Essential
use was made of the maximal regularity result for equations without
delay terms there, and the corresponding regularity result was also
obtained for the equations with delay terms. In [3] stability results
were established for equations in Hilbert space. In [11} equations in a
general Banach space E were investigated without assuming that A is
densely defined. The solvability was established in the space maximal
regularity results. In H.Tanabe {12} the initial value problem for the
equations (1.1) in a Banach space X was constructed the fundamental
solution in the sense of S. Nakagiri [8], [9]. It was shown that the
mild solution satisfying the initial condition u(s) = y(s), s € {—hA,0)
expressed by S. Nakagiri’s formula is actually the strict solution of
(1.1), (1.2) provided that f is a Holder continuous function in [—A, 0]
with values in the Banach space D(A) endowed with the graph norm
of A but with no maximal regularity result. An example of such a
function f ¢ L*(0,T : H) is given in the appendix.

M. G. Crandall and J. A. Nohel [5] study the existence, unigueness,
regularity and dependence upon data of a strong solutions of abstract
functional differential equation

(;—z:-{—AuaGu (0<¢t<T)
u(0) ==z

in a real Banach space.
In the proof of the main result, we can transformed (1.3) to (1.1).

(1.3) u'(t) + Au(t) +/0 a(t — s)Aqu(s)ds = (1)

where f(t) = —Ayy(t —h) — ftu_h a(t — s)Aqy(s)ds.
With the aid of a method to [5] we can transformed (1.4) to (1.3).

(1.4) u'(t) + Au(t) = G(u)(2),
(1.5) Gu)=f+Rxf~R(Ou+Rz—Rxu
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where the notation (a * b)(t) = f(: a(t — s)b{s)ds. The function R is of
bounded variation with values in B(H) as well as in B(V™), and G(u)
wiil be considered as a function with values in H and also in V* for

u € C([0,T]: H).

2. Assumptions and Main Theorem

Let a(u,v) be a sesquilinear form defined on V x V. Suppose that
there exist positive constants C and ¢ such that

(2.1) la(u, v)| < Clufllloll, Re afu,u) > clful®

for any u,v € V. Let A € B(V,V*) be the operator associated with this
sesquilinear form: {Au,v) = a(u,v), for any u,v € V. The realization
of A in H which is the restriction of A to D{A) ={u €V : Aue H}is
also denoted by the same letter A. For the sake of convenience we as-
sume that A4 has an everywhere defined bounded inverse. The sesquilin-
ear form a(u,v) is called the adjoint sesquilinear form of a(u,v). Let
A* be the adjoint of A. We assume that there exist a positive constant
C such that

|la(u,v) ~ a{w,v)] < Cllullfjvll.
Thus, we have
(2.2) (A" — Ayu] < Cllu].

Let A;, (i = 1,2) be operators in B(V,V*). Then 4,A7! € B(V*), for
¢ =1,2. We assume also that 4,47 € B(H), (1 =1,2).
We assume

(2.3) re H
(2.4) y € L3(—h,0: V)N LY ~h,0: D(A),(s + h)ds)
where y € L} —h.0 : V) and y € L} —h,0 : D(A),(s + h)ds) mean

ffh ly(8)[?ds < +o00 and f_oh |Ay(s)[*(s + h)ds < +o0, respectively.
For —h <o < 1 <0, it follows that

/; Ay(s)ds = /o ' Ay(s)ds — / ’ Ay(s)ds.

T
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Hence, we put
¢ = sup |/ Ay(s)ds| < +o0.
—h<o<r<0 Jo

We consider the existence and uniqueness of solutions of the abstract
functional differential equation :

d
(2.5) Eu(t) +Au()=Gu)(t) , 0<t<LT
(2.6) u(0) = .
According to M. G. Crandall and J. A. Nohel [5] it suffices to prove
the following proposition in order to establish below.

DEFINITION 2.1. A strong solution « of (2.5) on [0,T] is a function
we L20,T: V)N L%0,T : D(A),tdt) such that (2.5) (2.6).

Our main theorem is the following.

THEOREM 2.2. Let = and y satisfy (2.3) and (2.4). The solution u
of (1.1) and (1.2) exists and is unique.

PROPOSITION 2.3. The equation (1.1} is equivalent to the linear
Volterra integro-differential equation (2.5) over an interval [0,T]

3. The Proof of Theorem 2.2

3.1. Construction of Solution in [0,h)

In the following we make formal calculation.
It is easy that the following :

if t € {0, k), then it follows that —h <t — h < 0, hence, the initial
condition is u(t — h) = y(t — h). We obtain

/_Oh a(—s)Aqu(t+ s)ds = /0

- a(t—-s)Agu(s)ds-;-/{; a(t— s)Aqu(s)ds.

We put
0

)=~ =1 = [ alt = )Asa(s)ds

t—h
by a variable transformation and an elementary calculation. Therefore,
the equation (1.1) is equivalent to the Volterra equation (1.3).
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PROPOSITION 3.1. Let = and y satisfy (2.3) and (2.4) over an in-
terval [0,h). Then the function f(t) € L%(0,h: V*) N L%(0,h : H,tdt)

exists in H.

Proof. Since

0

0
f a(t — s)Ayy(s)ds = Az A™! ] a{t — s)Ay(s)ds
t—h

t—h
Q 0 s
= Ay A" Ha(t) /t—h Ay(o)do — /t_h /t—h Ay(o)doda(t — s)}.

Hence, we obtain
0
| a(t — s)Azy(s)ds| < |A2A*1| Cy{la(®)| + V{(a: —h,t)}
t—h

where V(a: —h, 1) is the total variation of a on the interval (—h,t]. In
view of the elementary calculation, we obtain

{/ h If(t>|2tdt}%

0
st i 1A+ s
—h
0 h
+ s t— s)As d—}<+oo.
iy iy A

We follow that
f(t) € L*(0,k : H,tdt).
And, we obtain that

( / ' nf(t)uids)% < ( / gt - h)nzdt)%

kg0 L
+ {/ "] a(t —S)Azy(s)ds"zdt} < 400
0 t—h

where || - ||, stands for the norm of V*. Hence the proof is complete.
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PRroOPOSITION 3.2. If u € C((0,h}: H), then
(1) G(u) € L2(0,h: V*)N L0, T : H,tdt)
(2) Jio Gu)(r)dr = limeryq [} G(u)(7)dr exists in H.

Proof. Let R(t) is of bounded variation over an interval (0, A].
We have

(R ol =1 [ Re-97 [ fo)doa

t 8
<IRO [ follds+V(R:0.0 max | [ o)l
+0_ 0<s<t Jyo
Hence, we have
R f e L>®(0,h: H) C L*(0,h: V*)N L*(0,T : H,tdt).
Hu e C((0,k] : H), then R(0)u € C((0,h) : H) is obvious. For any
x € H, we obtain R(t)r € L*°(0,h: H). Since

(B *u)(t)] = | jo LR(t = 9)u(s)] < V(R:0,1) g, lu(s)].

We get .
Rxug L®(0,h: H).

Hence, the proof is complete.

Let z and f be arbitrary element of H and L*(0,h : V*), respec-
tively. Then in view of Theorem of J.L. Lions [7] there exists a unique
function « € L%(0,7 : V)N C([0, T) : H) satisfying

(3.1)  u' e L}0,T:V*)

(32)  ult)+ Ault) = f(1)
(8.3) w0)==

Ga) WP +e [ lu(s)Pds <felt+ 3 [ ACe)2ds

where || - ||+ stands for the norm of V*.
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PROPOSITION 3.3. In addition to the above let f € L*(0, h : H,tdt).
Then the following inequality holds

/D w(s)2sds < (14 S-t)left + <1+~t / 1 (s)ludls
(3.5)

2 ] |(s)Psds

Proof. In the following we make formal calculation. It is easy to
justify it approximating z and f by nice elements.

Edza(u(t),u(t)) = a(u'(t), u(t)) + a(u(t),v'(t))
(36) (1), (A% — Au(®)) + (w'(E), Au(t)) + (Au(?), u'(t))
=2Re(Au(t), u'(t)) + (u'(¥), (A" — A)ult))

Taking inner product (3.2) and «'(¢), and using (3.6} we get
|’ (£)]? + a(u(t),u(t)) = Re(f(#),'(¢))
+ 247 = (o)),

Multiplying the both sides by ¢ and integrating over {0, ]

/0 ‘ul(3)123d5+~;—/0 s%a(u(s),u(s))ds
:Re/[; (f(s),u'(s))sds + %/ﬂ (u'(s), (A* — A)u(s))sds.

By an elementary calculation, we obtain (3.5). The proof is complete.

Set up(?) = z. Let uy be the solution of the following initial value
problem

d
Eul(t) + Auy (t) = G(ug )(t),
u1{0) = .
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Since up € C([0,4] : H), G(up) € L%(0,% : V*) by Proposition 3.2.
Hence, by a results of J.L. Lions {7], the solution u;(#) exists.

Since u3(¢) € C(10,R} : H), G(ra) € L*(0,h : V*). Hence we can
define u,(t) as the solution of

d
Su2(t) + Awr(t) = G(u)(®),
uz(O) =x.

Iterating this process, one shows that there exists a sequence {u,(t)}
such that

d
() + Aun(t) = Gluna)(),
un(0) = z

foranyn=1,2,---.
To prove the convergence of {u,(t)}, we remark the following that.

PROPOSITION 3.4. Let u(t) and %(t) be elements of C([0, 4] : H),
and v(t), ¥(t) be a solutions of the following equations :

%v(t) + Av(t) = G(u)(2) , v(0) = =
25() + A3(1) = G@YL) , %0) ==,
then the following inequality holds :
(31 1o() = 90 < (RON+ V(R 0,9) [ hu(s) — ol
Proof. Since

2 (v(2) = 5(8)) + Aw(t) ~ 3(8)) = Cl)(®) - GRY)

Taking the inner product of both sides and (v(t) — ¥(t)), we obtain

1d I . -
52 10() = P < 1G(u)(t) - G@BIu(t) - T
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We integrate this inequality from 0 to ¢, E)bta.ining
1
§|v(t) —B(t)?
1 " ¢ - -
<5100~ FOF + [ 1Gw() - G = As)ds.
0

By the Grown’s type Lemma of 4}, we have

() — 5(1)] < jﬂ \G(u)(s) — G(R)(s)|ds.

Note that G{u) and G(%) themselves do not belong to L0,k : H),
but their difference does. By the definition of G(u)(¢), we obtain

G(u)(s) = G(@)(s) = —R(0)(u(s) — @(s) — (R * (u — @))(s).

Hence

lv(t) — ()] < R(O)j0 u(s) — U(s)lds + fo (B * (u —@))(s)lds.

By the elementary calculation, we obtain (3.7). Applying (3.7} to un,
Up—1 in place of u, ¥

12 (6) = n ()] < (RO + VR 0,8) [ un(s) = tra (s,

If 0 <t<hthen V(R:0,t) < V(R:0,h). Hence, putting
Co = |R(0)| + V(R : 0,h),

we have
t
(3.8) ftnt1(t) —un(t)] < CO/ fun(8) — un—1{s)|ds.
0
Iterating (3.8) one shows by the induction the following that
(t )n 1
frnsa(®) — (01 £ G5 [ S fus(r) = ol

NCEEVE
< GoR)" ax Jun(7) = wo(7)|.

n!  o<r<h
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By the ahove argument, {u,(t)} converges uniformly in C([0. Al ).
Put u(t) = limp— o0 1, (2) using (3.4) , (8.5) to {un()}, we hizwe the
following that

t 1 t
¢ [ Munss(@lPds <l + % [ 1GCun)o)Eds.

! 2 . . 1. C*
' < ~ 2z ~ PR
[ W) sds < L+ G0l + 10+ 520 [ 16 s

+2 [ [6lun)o)fsds

As is easily seen the right hand sides of the above inequalitic. are
bounded. Hence, we have that u and u' belong to L%(0,h : V', and
L2(0,k : H,tdt), respectively, and u satisfies (1.4) and (1.2). Thus u
is a solution of (1.4) and hence of {1.3). Therefore, u is a solution of

(1.1).

Uniqueness follows easily from Proposition 3.4 over an interval 0, A].

3.2 Construction of Solution in [h,2h)

It i1s easy that the following :
if t € {h,2h], then it follows that —h < ¢ — 2h < 0, hence, the initial
condition is u(? — 2h) = y(t — 2h).

One obtains

—h t—h

/ a(—s)Azu(t + s)ds = /t a(t — s)Aqu(s)ds

h : i
= / a{t — 3)Aqu(s)ds + f aft — s)Ayu(s)ds.
t—h h

We put
t

b
)= /;:, a(t — s)Asu(s)ds + /; a(t — 8)Aqu(s)ds.

The function f(t) is satisfied the assumption of [5] over an interval

[, 2h).
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PROPOSITION 3.5. Let & and y satisfy (2.3) and (2.4) over an in-
terval (h,2h). Then the function f(t) € L*(0,h : V*) 0 L*(0,h :
H (t — h)dt) exists in H.

Proof. The proof of this Proposition is the same as that of Propo-
sition 3.1 Hence, we obtain that

h
/ a(t — s)Azu(s)ds
t—h

is bounded in H.
By u(t) € L2(0, h : D(A), tdt) it satisfies that the following

f & L}0,kh: H,(t — h)dt).

In view of [}, Au(t)dt € H, we obtain that [;+, f(t)dt belongs to H.
Hence, the solution of (1.3} exists in [h,2h) satisfying the initial
condition u(h) = u(h — 0), e, u(t) € L¥A,2h : V)N LY R, 2h :
H,(t — h)dt), and f::-'o Au(t) exists in H.
The proof of the main theorem is almost the same as that of Section

3.
Iterating this process, one shows that there exists a solution for any

{0, 7.
Appendix

We give an example of H, V, f such that
(A1) fe L0, V*)yn L¥0,; H,tdt),

(A.2) f-:o f(t)dt exist in H,
(A3) [T 17()ldt = oo

Let A be the operator associated with the inner product ((-,-)) of
V.

a(u,v) = ((u,v)), V uw,veV
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Then, the realization of A in H is positive definite and self-adjoint. For
ug € H set u(t) = e *Aug. Then it is easy to see that

(a.1) f@) =u'(t) = —Ae iy,

satisfies (A.1) and (A.2).

It remains to choose H, V, u, so that the function f(t) defined by
(a.1) satisfies {A.3).

Let H = L?(0,7),V = H}{0,n). Then

(22) () = [ G- S

is an inner product in H(0,7). The realization in L%*(0,7) of the
operator associated with (a.2) is

D(A) = {u € L*(0,7) : w(0) = u(x) = 0},

Au=—Au for w € D(A).

Denote the eigenvalue of A by n?, n = 1,2,---, and the correspond-
ing orthonormal set of eigenfunctions by ,{z) = \/% sinnz.
We use the following elementary fact :

o0 .
1 <oo, ifp>1
(2.3) 3 _.___{ .7
—= n(lnn)? { =00, fp<1.
Let

o0
_ Pn
! ngl (n +1)*/2(In(n +1))*/%’

that is, uy satisfies

1
('ttu, (Pn) = (n + 1)1/2(111(11 + 1))2/3 .

Put u(t) = e *uqy. Then,

=)
- a2
u’(t) = —Ae tAuO = - § :(u(}) fpn)nze * t@w

n=0
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Since (ug,n) is a decreasing sequence

WOOF = 3 (o inte

n=1
(a-4) WA
E : 2, ,—2%nt 2
. =1 e (HO’SO[ﬁI)

where [ | is Gauss’s notation. Noting that z%¢~2*"! is an increasing
function of z in the interval [0, \/%], we get

WH 1
/\/— 4 —2:c tdy = Z / 4 —23: tdr + /\/T x4e—2$2td$
0 W3

-—-2

4—2nt
<Zn 72

n=]

(a.5)

On the other hand, by the change of the variable 2%t = y, we obtain

Ve 1,2
2t e-—2x2td$____ Yy 6—23/__}_ y'%dy
(.6) 0 o 1t? 24/t

5
t=2 1

Combining (a.5) , (a.6) we get

[N

(a.7) WP > =

1
[ it

2
Set a = ( ‘—}2- fol Y2 e_2ydy) , it follows from (a.7)

]u,(t)‘ Z Co - t_%(uﬂa(f)[ﬂ])
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for some positive constant ¢y and 0 <t < a.
Hence, with the aid of the change of the variable t = s7% we have

¢ t N -5
/0 [ (©)]dt > co /0 (g, oy /el

Zcu/ sg(ug,gp[sl)%'zds
N

where N = [a'%]. As 1s easily seen
n+1

/N s‘%(uo,cpisl)ds = Z s“%(uo,q)[,])ds

n=N""

> 3 (n 4 1) (uo, on)
n=N

= 1

- ,Z; (n + 1)(In{n + 1))2/3

I
Wy n(lnn)?/3 ’

Thus we conclude
[ 1= [ = o
o 0
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