• Title/Summary/Keyword: retaining time

Search Result 273, Processing Time 0.024 seconds

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

Behavior of Reinforced Earth Retaining Wall by Shaking Table Test (진동대 모형실험을 통한 보강토 옹벽의 거동 특성)

  • Yoon, Won-Sub;Yoon, Bu-Yeol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.637-647
    • /
    • 2019
  • In this study, we analyzed seismic behavior of reinforced earth retaining wall through the model test in order to characterize the behavior of reinforced earth retaining wall during earthquake. A scale model test was performed based on similitude ratio in accordance with law of similitude due to time and financial constraints on real scale modeling experiments. Seismic resistance characteristics of each seismic waves were analyzed by assessing the variations measured through excitation of the excited acceleration of 0.05g, 0.1g, 0.15g, and 0.2g. The results of this study, it would be important to obtain reasonable and abundant data on ground properties and seismic design in preparation for earthquakes when assessing the safety of block type reinforced earth retaining wall confined to model experiment. Acquisition of those data and systematic analytical techniques are considered likely to have a significant effect on the decrease of structure damage caused by earthquakes in Korea which has recently witnessed frequent occurrence of earthquakes.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimentional Analysis (2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구)

  • Park, Chun-Sik;Park, Hae-Chan;Kim, Jong-Hwan;Park, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.801-810
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2nd dimensional analysis for convenience of analysis and time saving. However, the construction field is 3rd dimension, in this study, practised the 3rd dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2nd and 3rd dimensional analysis. existing 2nd dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3rd dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2nd dimension analysis is underestimated. Moreover, results of 2nd and 3rd dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H, 1.0H and 1.5H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2nd dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3rd dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimensional Analysis (2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구)

  • Kim, Jong-Hwan;Park, Choon-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.181-185
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2 dimensional analysis for convenience of analysis and time saving. However, the construction field is 3 dimension, in this study, practised the 3 dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2 and 3 dimensional analysis. existing 2 dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3 dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2 dimension analysis is underestimated. Moreover, results of 2 and 3 dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H and 1.0H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2 dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3 dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

Case Study on Application of PHC Pile to Earth Retaining and Retention Wall (옹벽겸용 흙막이벽으로 PHC말뚝의 적용 사례 연구)

  • Han, Jung-Geun;Hong, Ki-Kwon;Eo, Yun-Won;Kim, Sang-Kwi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2006
  • The construction of earth retaining wall and structure which get environmental element have to appling at the same time, then construction period and construction cost increase. These system which is presented to overcomes shortcoming and have function of earth retaining wall and retention wall at the same time. However, because existing method has limit excavation depth, the advanced design pattern more than existing method, rows of pile was applied. The workability and stability of applied design method are evaluated through analyze of construction case. The results confirmed that application design method can solve displacement of pile and limit excavation depth in existing earth retaining wall.

  • PDF

Analysis of Damage Cases of Reinforced Earth Retaining Walls for Expressways at the Time of Introduction 30 Years (도입 30년 시점에서 고속도로 보강토옹벽의 손상사례 분석)

  • Do, Jongnam;Kim, Nagyoung;Kim, Myoungil;Park, Doohee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.29-34
    • /
    • 2020
  • Reinforced earth retaining walls were developed in France in the 1970s and began to be applied in earnest to Korea in the 1990s. And now, about 1,300 reinforced soil retaining walls support the embankment of highways and bridge connections. The reinforced earth retaining wall construction technology has evolved day by day, and in recent years the reinforced earth retaining wall itself has been developed and introduced as a demonstration. However, various damages are constantly occurring in the reinforced earth retaining walls constructed throughout the highway. The cause of this was analyzed as minor defects in the design, construction, and maintenance stages. The solution for this is a change in perception of the importance of each individual process, but this does not form overnight. In this study, 30 years have passed since the introduction of the reinforced soil retaining wall on the highway, the damage cases were analyzed and categorized that have occurred in the reinforced soil retaining wall so far, and attempted to present a confrontation. As a result, the damage occurring on the reinforced soil retaining wall was divided into 10 types, and the causes and countermeasures in the design, construction, and maintenance stages for each were derived.

An Experimental Study of Moxa-Combustion Time by the Density of Moxa Material -On the point of time in the combustion stage- (애구(艾灸)의 연소(燃燒) 시간(時間)에 대한 실험적(實驗的) 연구(硏究) -구간별(區間別) 발현(發現) 시점(時點)을 중심(中心)으로-)

  • Park, Young-Bae;Kang, Sung-Keel;Koh, Hyung-Kyun;Oh, Hwan-Sup
    • The Journal of Korean Medicine
    • /
    • v.15 no.2 s.28
    • /
    • pp.241-252
    • /
    • 1994
  • It is known that the pattern of combustion temperature can be classified into preheating, heating. retaining and cooling periods. In this experiment. the authors have studied the heating mechanism by the density of moxa material during the heating and retaining periods. The starting point. the point at which it begins to reach the maximum gradient temperature. the ending point of the heating period. and the ending point of the retaining period were measured in order to get effective stmulation by repetition of moxa-combustion. For the experiment. samples of 300mg. 400mg, and 500mg of moxa material were molded into conical molds with each 10mm in diameter and height resulting in the volume of $0.26cm^3$. The following results were obtained: The $300mg/0.26cm^3$ denstiy sample reached al1 points tested faster than the samples of $400mg/0.26cm^3$ and $500mg/0.26cm^3$ It dose not reveal any statistical differences between $400mg/0.26cm^3$ and $500mg/0.26cm^3$ in the ending point. the point at which it begins to reach the maximum gradient temperature of the heating period or the ending point of the reataining period The only difference shown was in the starting point of the heating period. According to the above results. it is concluded that the lower density moxa material reached each point of the the respective period faster than the high density moxa material.

  • PDF

Time Series Analysis for Predicting Deformation of Earth Retaining Walls (시계열 분석을 이용한 흙막이 벽체 변형 예측)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.65-79
    • /
    • 2024
  • This study employs traditional statistical auto-regressive integrated moving average (ARIMA) and deep learning-based long short-term memory (LSTM) models to predict the deformation of earth retaining walls using inclinometer data from excavation sites. It compares the predictive capabilities of both models. The ARIMA model excels in analyzing linear patterns as time progresses, while the LSTM model is adept at handling complex nonlinear patterns and long-term dependencies in the data. This research includes preprocessing of inclinometer measurement data, performance evaluation across various data lengths and input conditions, and demonstrates that the LSTM model provides statistically significant improvements in prediction accuracy over the ARIMA model. The findings suggest that LSTM models can effectively assess the stability of retaining walls at excavation sites. Additionally, this study is expected to contribute to the development of safety monitoring systems at excavation sites and the advancement of time series prediction models.

A Case Study of The Collapsed Reinforced-Soil Retaining Wall (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • This paper deal with the analysis of the causes about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extraction from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy, which are causes of the collapse.

  • PDF