• Title/Summary/Keyword: restrained beam

Search Result 127, Processing Time 0.021 seconds

Spatial Stability of Monosymmetric Thin-walled Circular Arch (일축대칭 단면을 갖는 박벽 원형아치의 면외좌굴해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.449-456
    • /
    • 1998
  • A consistent finite element formation and analytic solutions are presented for spatial stability of thin-walled circular arch. The total potential energy is derived by applying the principle of linearized virtual work and including second order terms of finite semitangential rotations. As a result the energy functional corresponding to the semitangential rotation is obtained, in which the elastic strain energy terms are considered restrained warping effects. We have obtained analytic solution for the lateral buckling of monosymmetric thin-walled curved beam subjected to pure bending or uniform compression and it's boundary conditions are simply supported. For finite element analysis, the two node cubic Hermitian polynomials are utilized as shape Auctions. In order to illustrate the accuracy of this study, parameter studies for lateral buckling problems of circular arch are presented and compared with available solutions and numerical results analyzed by the FEM using straight beam element.

  • PDF

Free Vibration Analysis of Thin-walled Circular Arch with Unsymmetric Section (비대칭 단면을 갖는 박벽 원형아치의 자유진동 해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.465-472
    • /
    • 1998
  • In this study, analytic solution and finite element formulation for the free vibration analysis of thin-walled circular arch, based on linearized virtual work and Vlasov's assumption, including restrained warping effect and second order terms of finite semitangential rotations, is presented. The total potential energy is derived by applying the Hellinger-Reissner principle. In this formulation, all displacement parameters of deformation are defined at the centroid axis. For the finite element formulation, the two node cubic Hermitian polynomials are utilized as shape functions. In special case, potential energy functional of thin-walled curved beam with monosymmetric cross section is derived. From this methodology, analytic solution for the free vibration of monosymmetric circular arch with simply supported is derived. In order to illustrate the accuracy of this study, various parameter studies for free vibration of circular arches are presented and compared with numerical solution analyzed by the FEM using straight beam element.

  • PDF

Experimental study on laterally restrained steel columns with variable I cross sections

  • Cristutiu, Ionel-Mircea;Nunes, Daniel Luis;Dogariu, Adrian Ioan
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.225-238
    • /
    • 2012
  • Steel structural elements with web-tapered I cross section, are usually made of welded thin plates. Due to the nonrectangular shape of the element, thin web section may be obtained at the maximum cross section height. The buckling strength is directly influenced by lateral restraining, end support and initial imperfections. If no lateral restraints, or when they are not effective enough, the global behaviour of the members is characterized by the lateral torsional mode and interaction with sectional buckling modes may occur. Actual design codes do not provide a practical design approach for this kind of elements. The paper summarizes an experimental study performed by the authors on a relevant number of elements of this type. The purpose of the work was to evaluate the actual behaviour of the web tapered beam-columns when applying different types of lateral restraints and different web thickness.

Experimental Investigation of Lateral Retrofitting Effect with CFRP and BRB (Buckling-Restrained Brace) for Beam-column Joints of Low-Rise Piloti Buildings (탄소섬유시트와 비좌굴 가새를 이용한 저층 필로티 구조물의 보-기둥 연결부의 횡방향 보강효과에 관한 실험적 연구)

  • Seo, Sang-Hoon;Yoo, Yeon-Jong;Lee, Young-Hak;Kim, Hee-Cheul;Lee, Ki-Hak;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • The purpose of this study is to evaluate the structural capacities of beam-column specimens retrofitted with CFRP sheet and BRB (Buckling-Restrained Brace) under sustained axial and cyclic lateral loads. Three specimens were made using different retrofitting methods : non-retrofitted, retrofitted with CFRP sheets only, and retrofitted with both CFRP sheet and BRB systems. Lateral load resistant capacities were evaluated based on the load-displacement relations. From the results, the maximum lateral forces of the FRP sheet retrofitted and both the FRP and BRB retrofitted specimens showed approximately 34% and 138% improvement, respectively, compared with the non-retrofitted specimen.

Vibration Analysis of a Beam-Column with Elastically Restrained Ends and Various Intermediate Constraints (다양한 중간구속조건을 갖는 양단 탄성구속 보-기둥의 진동해석)

  • J.M. Lee;S.H. Lee;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-194
    • /
    • 1991
  • Vibration analysis methods of a beam-column with elastically restrained ends and various intermediate constraints such as rectilinear springs, rotational springs and concentrated masses are presented. Firstly, an exact method of solutions based on Hamilton's principle and Laplace transform method is shown. This method of solutions is very complicate in cases of having Intermediate constraints more than two. Therefore, Rayleigh-Ritz method using the eigenfunctions of the base system, the system without intermediate constraints, are also investigated. Extensive numerical examples carried out for comparisons with known published works show that the latter method has easy adaptability for wide varieties of boundary conditions and intermediate constraints, and gloves good accuracy for various intermediate constraints with reasonable number of terms in construction of a trial function.

  • PDF

A Study on the Fire Resistance and Mechanical Properties of High Strength Concrete Mixed Hybrid Fibers (하이브리드 섬유 혼입 고강도 콘크리트의 내화 및 역학적 특성에 관한 연구)

  • Shin, Young-Suk;Li, Zhi-Min;Yoo, Myung-Hwan;Cho, Cheol-Hee;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.67-75
    • /
    • 2010
  • In this paper, by using steel fiber, polypropylene fiber and these two hybrid fibers, the fire resistance performance and explosive properties of High Strength Concrete (HSC) with specified compressive strength of 40MPa are discussed. The paper also examines the bending resistance of the beam and the shearing resistance properties of non-reinforced HSC beam. This research helps to clarify the fire resistance of fiber HSC and its anti-explosion methods. The test results show that crack generation, explosion and carbonization can be effectively restrained when HSC is mixed with hybrid fibers under high temperature; furthermore, the maximum internal force and ductility are increased and the initial cracking can be restrained in the mechanical test.

Shake table responses of an RC low-rise building model strengthened with buckling restrained braces at ground story

  • Lee, Han Seon;Lee, Kyung Bo;Hwang, Kyung Ran;Cho, Chang Seok
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.703-731
    • /
    • 2013
  • In order to verify the applicability of buckling restrained braces (BRB's) and fiber reinforced polymer (FRP) sheets to the seismic strengthening of a low-rise RC building having the irregularities of a soft/weak story and torsion at the ground story, a series of earthquake simulation tests were conducted on a 1:5 scale RC building model before, and after, the strengthening, and these test results are compared and analyzed, to check the effectiveness of the strengthening. Based on the investigations, the following conclusions are made: (1) The BRB's revealed significant slips at the joint with the existing RC beam, up-lifts of columns from RC foundations and displacements due to the flexibility of foundations, and final failure due to the buckling and fracture of base joint angles. The lateral stiffness appeared to be, thereby, as low as one seventh of the intended value, which led to a large yield displacement and, therefore, the BRB's could not dissipate seismic input energy as desired within the range of anticipated displacements. (2) Although the strengthened model did not behave as desired, great enhancement in earthquake resistance was achieved through an approximate 50% increase in the lateral resistance of the wall, due to the axial constraint by the peripheral BRB frames. Finally, (3) whereas in the original model, base torsion was resisted by both the inner core walls and the peripheral frames, the strengthened model resisted most of the base torsion with the peripheral frames, after yielding of the inner core walls, and represented dual values of torsion stiffness, depending on the yielding of core walls.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams

  • Li, Yong;Yu, Haifeng;Liang, Xiaoyong;Yu, Jianjun;Li, Pengcheng;Wang, Wei;Wang, Qizhi
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.293-303
    • /
    • 2022
  • In order to improve the seismic resilience of coupled wall structure, coupling beam with fuse has been developed to reduce the post-earthquake damage. However, the fuses often have a build-up I-shaped section and are relatively heavy to be replaced. Moreover, the fuse and the beam segments are usually connected by bolts and it is time-consuming to replace the damaged fuse. For reducing the repair time and cost, a novel quickly replaceable coupling beam with buckling-restrained energy dissipaters is developed. The fuse of the proposed coupling beam consists of two chord members and bar-typed energy dissipaters placed at the corners of the fuse. In this way, the weight of the energy dissipater can be greatly reduced. The energy dissipaters and the chords are connected with hinge and it is convenient to take down the damaged energy dissipater. The influence of ratio of the length of coupling beam to the length of fuse on the seismic performance of the structure is also studied. The seismic performance of the coupled wall system with the proposed coupling beam is compared with the system with reinforced concrete coupling beams. Results indicated that the weight and post-earthquake repair cost of the proposed fuse can be reduced compared with the typical I-shaped fuse. With the increase of the ratio of the beam length to the fuse length, the interstory drift of the structure is reduced while the residual fuse chord rotation is increased.

Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Hozhabrossadati, Seyed Mojtaba
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2018
  • This paper investigates the free vibration analysis of double-beam system coupled by a two-degree-of-freedom mass-spring system. In order to generalize the model, the main beams are assumed to be elastically restrained against translation and rotation at one end and free at the other. Furthermore, the mass-spring system is elastically connected to the beams at adjustable positions by means of four translational and rotational springs. The governing differential equations of the beams and the mass-spring system are derived and analytically solved by using the Fourier transform method. Moreover, as a second way, a finite element solution is derived. The frequency parameters and mode shapes of some diverse cases are obtained using both methods. Comparison of obtained results by two methods shows the accuracy of both solutions. The influence of system parameters on the free vibration response of the studied mechanical system is examined.