• Title/Summary/Keyword: resources-based theory

Search Result 575, Processing Time 0.026 seconds

Development of Distributed Rainfall-Runoff Model by Using GIS and Uncertainty Analysis (I) - Theory and Development of Model - (GIS와 불확실도 해석기법을 이용한 분포형 강우 - 유출 모형의 개발 (I) - 이론 및 모형의 개발 -)

  • Choi, Hyun-Sang;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.329-339
    • /
    • 2004
  • The main objective of this study is to develop a GIS-based two-dimensional model for the simulation of rainfall-runoff process and overland flow of a watershed. The tasks of this study are summarized: to develop a two-dimensional model for overland flow and to construct a rainfall-runoff simulation system linked with GIS. The mathematical formulation of the model incorporates four parts: spatially varied rainfall, spatially distributed infiltration, 1-directional, 4-directional and 8-directional overland flow routing scheme, and one-dimensional channel routing scheme. For the development of stochastic model, Monte Carlo simulation method has been directly integrated into the model. GIS using Arc/Info and ArcView has been applied to prepare the model input data(elevation, soil type, rainfall data, etc.) for a simulation and to demonstrate the simulation results.

Storm-Water CSOs for Reservoir System Designs in Urban Area (도시유역 저류형 시스템 설계를 위한 CSOs 산정)

  • Jo, Deok-Jun;Kim, Myoung-Su;Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

Estimation of Rock Erodibility due to Energy Dissipation of Inflow Passing through the Sluice Gate of Seadike (배수갑문 유입수류의 에너지 감쇠에 따른 암석 침식 가능성 추정)

  • Jo, Jin-Hun;Park, Yeong-Jin;Park, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.237-245
    • /
    • 2000
  • Sihwa seadike is originally designed to control the water level In lake Sihwa. However the sluice gate is being operated everyday to preserve the water quality of lake. Due to the frequent operation of gates the bottom of drainage canal which is composed of weathered rock and soft rock is being scoured. Recently the bottom in the front area of apron was protected by putting underwater concrete. This study is carried out to understand the hydraulic situation for protection, and to estimate the trend of scouring by comparing between energy dissipation and registance of bottom rock. Annandale(1995) introduced the erodibility index theory, and suggested a criteria to judge the erodibility of rock through the relation between the erodibility index and energy dissipation. Determenation of erodibility index of rock is based on the results of sample core analysis, and the energy dissipation of flow is calculated from the estimation of total head on the scale model. These two values are plotted on the criteria, and the erodibility of rock is determined.

  • PDF

Time of Concentration on Impervious Overland (불투수층 사면에서의 도달시간)

  • Yu, Dong-Hun;Jeon, U-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.195-205
    • /
    • 2000
  • Many types of factors were devised to calculate time of concentration. Singh(976) derived time of concentration of overland flow using kinematic wave theory for plane, converging, and diverging geometric configurations. The present paper investigated the time of concentration for particularly plane geometric configuration. A theoretical equation of time of concentration is derived based on the assumption of impervious overland flow as in the open channel flow. The study characterized the overland flow by many types of characteristic flow such as rough turbulent flow, smooth turbulent flow, laminar flow, and then suggested a theoretical equation on each flow condition. The present paper further considered the rainfall intensity as a main factor and devised an approximate composite equation reflecting the effect of rainfall intensity given at various return periods.

  • PDF

Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.537-551
    • /
    • 2011
  • Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

The Stochastic Behavior of Soil Water and the Impact of Climate Change on Soil Water (토양수분의 추계학적 거동과 기후변화가 미치는 영향)

  • Han, Su-Hee;Ahn, Jae-Hyun;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.433-443
    • /
    • 2009
  • For the better understanding of the temporal characteristics of soil water, this study is to suggest a stochastic soil water model and to apply it for impact assessment of climate change. The loss function is divided into 3 stages for more specified comprehension of the probabilistic behavior of soil water, and especially, the soil water model considering the stochastic characteristics of precipitation is developed in order to consider the variation of climatic factors. The simulation result of soil water model confirms that the proposed soil water model can re-generate the observation properly, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. Moreover, with the simulation results with a climate change scenario, it can be predicted that the future soil water will have higher variations than present soil water.

Efficient Resource Management Framework on Grid Service (그리드 서비스 환경에서 효율적인 자원 관리 프레임워크)

  • Song, Eun-Ha;Jeong, Young-Sik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.5
    • /
    • pp.187-198
    • /
    • 2008
  • This paper develops a framework for efficient resource management within the grid service environment. Resource management is the core element of the grid service; therefore, GridRMF(Grid Resource Management Framework) is modeled and developed in order to respond to such variable characteristics of resources as accordingly as possible. GridRMF uses the participation level of grid resource as a basis of its hierarchical management. This hierarchical management divides managing domains into two parts: VMS(Virtual Organization Management System) for virtual organization management and RMS(Resource Management System) for metadata management. VMS mediates resources according to optimal virtual organization selection mechanism, and responds to malfunctions of the virtual organization by LRM(Local Resource Manager) automatic recovery mechanism. RMS, on the other hand, responds to load balance and fault by applying resource status monitoring information into adaptive performance-based task allocation algorithm.

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab (집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력)

  • Lee, Jong-Han;Cho, Baik-Soon;Kim, Jung-Sik;Cho, Bum-Gu;Ki, Han-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.

Development of Numerical Model to Analyze Levee Break (하천제방붕괴 해석모형의 개발)

  • Park, Jae-Hong;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.571-578
    • /
    • 2009
  • Levee-break Analysis model is developed to predict the variation of breach width according to time and to estimate inundation area and depth in protected lowland. This Model calculate flood depth using 4 point implicit finite difference method in river channel and analyze breach flow based on physical theory introducing soil transport equation and erosion process. Breach analysis model and channel flood model are combined into Levee-Break Model and this model is applied to actual levee break case. Then, this model can simulate reasonably many levee-break parameters such as river stage, breach width, breach formation and so on. If the applicability of this model is proved through applications to more various actual levee-break cases, the suggested model is expected to do more accurate flood analyses on levee break site.

An Analysis of the Drought Period Using Non-Linear Water Balance Model and Palmer Drought Severity1 Index (비선형 물수지모형과 팔머가뭄심도지수를 이용한 가뭄지속기간 분석)

  • Lee, Jae-Su
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.533-542
    • /
    • 2001
  • In order to establish drought policy, the estimation of drought period for each drought situation should be preceded. Non-linear Water Balance Model(NWBM) and palmer Drought Severity Index (PDSI) can be used for analysis of drought period. As a water balance method considering moisture transfer between land surface and atmosphere, NWBM can be used to estimate transition time between dry and wet period induced by stochastic fluctuations. PDSI is also water balance method to show drought severity comparing actual precipitation with climatically appropriate precipitation based on precipitation and potential evapotranspiration. In this study, the drought periods are estimated using NWBM and PDSI for the Han River Basin. The drought periods according to the soil moisture estimated by NWBS and the drought periods according to drought severity index estimated by PDSI show similar trend. The estimated drought period from extreme drought to wet condition for the Han River Basin is about 3years.

  • PDF