• Title/Summary/Keyword: resolution-adaptive

Search Result 314, Processing Time 0.026 seconds

Adaptive Nonlinear Artificial Dissipation Model for Computational Aeroacoustics (전산공력음향학을 위한 적응형 비선형 인공감쇄모형)

  • Kim Jae Wook;Lee Duck Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.11-19
    • /
    • 2001
  • An adaptive nonlinear artificial dissipation model is presented for performing aeroacoustic computations by the high-order and high-resolution numerical schemes based on the central finite differences. An effective formalism of it is devised by combining a selective background smoothing term and a well-established nonlinear shock-capturing term which is for the temporal accuracy as well as the numerical stability. A conservative form of the selective background smoothing term is presented to keep accurate phase speeds of the propagating nonlinear waves. The nonlinear shock-capturing term that has been modeled by the second-order derivative term is combined with it to improve the resolution of discontinuities and stabilize the strong nonlinear waves. It is shown that the improved artificial dissipation model with an adaptive control constant which is independent of problem types reproduces the correct profiles and speeds of nonlinear waves, suppresses numerical oscillations near discontinuity and avoids unnecessary damping on the smooth linear acoustic waves. The feasibility and performance of the adaptive nonlinear artificial dissipation model are investigated by the applications to actual computational aeroacoustics problems.

  • PDF

Multiscale Adaptive Wavelet-Galerkin Method for Membrane Eigenvalue Analysis (박막 고유치 해석을 위한 멀티스케일 적응 웨이블렛-갤러킨 기법)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1291-1296
    • /
    • 2003
  • The objective of the present research is to develop a wavelet-based multiscale adaptive Galerkin method for membrane eigenvalue analysis. Since approximate eigensolutions at a certain resolution level can be good guesses, which play an important role in typical iterative solvers, at the next resolution level, the multiresolution iterative solution approach by wavelets can improve the solutionconvergence rate substantially. The intrinsic difference checking nature of wavelets can be also utilized effectively to develop an adaptive strategy. The present wavelet-based approach will be implemented for the simplest vector iteration method, but some important aspects, such as convergence speedup, and the reduction in the number of nodes can be clearly demonstrated.

  • PDF

Neural Network-Based Adaptive Motion Vector Resolution Discrimination Technique (신경망 기반의 적응적 움직임 벡터 해상도 판별 기법)

  • Baek, Han-Gyul;Park, Sang-Hyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.49-51
    • /
    • 2021
  • Versatile Video Coding(VVC)에서 동영상 압축 효율을 증가시키기 위한 다양한 화면 간 예측(inter prediction) 기법 중에 적응적 움직임 벡터 해상도(Adaptive motion vector resolution, 이하 AMVR) 기술이 채택되었다. 다만 AMVR을 위해서는 다양한 움직임 벡터 해상도를 테스트해야 하는 부호화 복잡도를 야기하였다. AMVR의 부호화 복잡도를 줄이기 위하여, 본 논문에서는 가벼운 신경망 모델 기반의 AMVR 조기 판별 기법을 제안한다. 이에 따라 불필요한 상황을 미리 조기에 인지하여 대응한다면 나머지 AMVR 과정을 생략할 수 있기에 부호화 복잡도의 향상을 볼 수 있다.

  • PDF

Motion Estimation and Coding Technique using Adaptive Motion Vector Resolution in HEVC (HEVC에서의 적응적 움직임 벡터 해상도를 이용한 움직임 추정 및 부호화 기법)

  • Lim, Sung-Won;Lee, Ju Ock;Moon, Joo-Hee
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1029-1039
    • /
    • 2012
  • In this papar, we propose a new motion estimation and coding technique using adaptive motion vector resolution. Currently, HEVC encodes a video using 1/4 motion vector resolution. If there are high texture regions in a picture, HEVC can't get a performance enough. So, we insert additional 1-bit flag meaning whether motion vector resolution is 1/4 or 1/8 in PU syntax. Therefore, decoder can recognize the transmitted motion vector resolution. Experimental results show that maximum coding efficiency gain of the proposed method is up to 5.3% in luminance and 7.9% in chrominance. Average computional time complexity is increased about 33% in encoder and up to 5% in decoder.

High-resolution image restoration based on image fusion (영상융합 기반 고해상도 영상복원)

  • Shin Jeongho;Lee Jungsoo;Paik Joonki
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.238-246
    • /
    • 2005
  • This paper proposes an iterative high-resolution image interpolation algorithm using spatially adaptive constraints and regularization functional. The proposed algorithm adapts adaptive constraints according to the direction of..edges in an image, and can restore high-resolution image by optimizing regularization functional at each iteration, which is suitable for edge directional regularization. The proposed algorithm outperforms the conventional adaptive interpolation methods as well as non-adaptive ones, which not only can restore high frequency components, but also effectively reduce undesirable effects such as noise. Finally, in order to evaluate the performance of the proposed algorithm, various experiments are performed so that the proposed algorithm can provide good results in the sense of subjective and objective views.

Online structural identification by Teager Energy Operator and blind source separation

  • Ghasemi, Vida;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • This paper deals with an application of adaptive blind source separation (BSS) method, equivariant adaptive separation via independence (EASI), and Teager Energy Operator (TEO) for online identification of structural modal parameters. The aim of adaptive BSS methods is recovering a set of independent sources from their unknown linear mixtures in each step when a new sample is received. In the proposed approach, firstly, the EASI method is used to decompose structural responses into independent sources at each instance. Secondly, the TEO based demodulation method with discrete energy separation algorithm (DESA-1) is applied to each independent source, and the instantaneous frequencies and damping ratios are extracted. The DESA-1 method can provide the fast time response and has high resolution so it is suitable for online problems. This paper also compares the performance of DESA-1 algorithm with Hilbert transform (HT) method. Compared to HT method, the DESA-1 method requires smaller amounts of samples to estimate and has a smaller computational complexity and faster adaption due to instantaneous characteristic. Furthermore, due to high resolution of the DESA-1 algorithm, it is very sensitive to noise and outliers. The effectiveness of the proposed approach has been validated using synthetic examples and a benchmark structure.

Design of FPGA Adaptive Filter for ECG Signal Preprocessing (FPGA를 이용한 심전도 전처리용 적응필터 설계)

  • 한상돈;전대근;이경중;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.285-291
    • /
    • 2001
  • In this paper, we designed two preprocessing adaptive filter - high pass filter and notch filter - using FPGA. For minimizing the calculation load of multi-channel and high-resolution ECG system, we utilize FPGA rather than digital signal processing chip. To implement the designed filters in FPGA, we utilize FPGA design tool(Altera corporation, MAX-PLUS II) and CSE database as test data. In order to evaluate the performance in terms of processing time, we compared the designed filters with the digital filters implemented by ADSP21061(Analog Devices). As a result, the filters implemented by FPGA showed better performance than the filters based on ADSP21061. As a consequence of examination, we conclude that FPGA is a useful solution in multi-channel and high-resolution signal processing.

  • PDF

A Study on Adaptive Signal Processing of Digital Receiver for Adaptive Antenna System (어댑티브 안테나 시스템용 디지털 수신기의 적응신호처리에 관한 연구)

  • 민경식;박철근;고지원;임경우;이경학;최재훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.44-48
    • /
    • 2002
  • This paper describes an adaptive signal processing of digital receiver with DDC(Digital Down Convertor), DDC is implemented by using NCO(Numerically Controlled Oscillator), digital low pass filter. for the passband sampling, we present the results of digital receiver simulation with DDC. We confirm that the low IP signal is converted to zero IF by DDC. DOA(Direction Of Arrival) estimation technique using MUSIC(Multiple SIgnal Classification) algorithm with high resolution is presented. We Cow that an accurate resolution of DOA depends on the input sampling number.

  • PDF

Image Data Interpolation Based on Adaptive Triangulation

  • Xu, Huan-Chun;Lee, Jung-Sik;Hwang, Jae-Jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.696-702
    • /
    • 2007
  • This paper proposes a regional feature preserving adaptive interpolation algorithm for natural images. The algorithm can be used in resolution enhancement, arbitrary rotation and other applications of still images. The basic idea is to first scan the sample image to initialize a 2D array which records the edge direction of all four-pixel squares, and then use the array to adapt the interpolation at a higher resolution based on the edge structures. A hybrid approach of switching between bilinear and triangulation-based interpolation is proposed to reduce the overall computational complexity. The experiments demonstrate our adaptive interpolation and show higher PSNR results of about max 2 dB than other traditional interpolation algorithms.

The Improvement of the Correlation Method for Shack-Hartmann Wavefront Sensors using Multi-Resolution Method (다중 해상도 중심점 탐색법을 이용한 샥-하트만 센서용 상관관계법의 속도 개선)

  • Yoo, Jae-Eun;Youn, Sung-Kie
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Shack-Hartmann sensors are widely employed as a wavefront measuring device in various applications. Adaptive optics is one of the major applications. Since an adaptive optics system should be operated in real-time, high-speed wavefront sensing is essential. In high-speed operation, integration time of an image detector is very short. In this case, noises such as readout noise and photon noise greatly influence the accuracy of wavefront sensing. Therefore a fast and noise-insensitive centroid finding algorithm is required for the real-time wavefront sensing. In this paper, the multi-resolution correlation method is proposed. By employing multi-resolution images, this method greatly reduces the computation time when compared to the fast Fourier transform (FFT) correlation method. The verification is performed through the computational simulation. In this paper, the center of mass method, correlation method and multi-resolution correlation method are employed to compare the measurement accuracy of the centroid finding algorithms. The accuracy of a Shack-Hartmann wavefront sensor using the proposed algorithm is proved to be comparable to that of the conventional correlation method.