• Title/Summary/Keyword: residual time

Search Result 2,097, Processing Time 0.04 seconds

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

The Effect of Pressurized Grouting on Pullout Resistance and the Group Effect of Compression Ground Anchor (가압식 압축형 지반앵커의 인발저항력 증대효과 및 군효과 특성)

  • Kim, Tae-Seob;Sim, Bo-Kyoung;Lee, Kou-Sang;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.5-19
    • /
    • 2010
  • The purpose of this study is to figure out the effect of pressurized grouting on the pullout resistance and the group effect of the compression ground anchor by performing pilot-scale chamber tests and field tests. The laboratory tests are carried out for 3-types of soils which are abundant in the Korean peninsular. Experimental results showed that the enlargement of anchor diameters estimated from the cavity expansion theory matches reasonable well with that obtained from experiments. Moreover, the required injection time as a function of the coefficient of permeability of each soil type was proposed. A series of in-situ anchor pullout tests were also performed to experimentally figure out the effect of pressurized grouting on the pullout resistance. Experimental results also showed that the effect of the pressurized grouting is more prominent in a softer ground with smaller SPT-N value in all of the following three aspects: increase in anchor diameter; pullout resistance; and surface roughness. The pressurized grouting effect in comparison with gravitational grouting was found to be almost nil if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N value was proposed. And based on in-situ group anchor pullout tests results, a new group effect equation was proposed which might be applicable to decomposed residual soils which are abundant in the Korean peninsular.

Generation characteristics of disinfection by-products (DBPs) by chlorination in sewage effluent (하수처리장 방류수의 염소소독부산물 발생 특성)

  • Seo, Hee-Jeong;Kim, Jong-Min;Min, Kyoung-Woo;Kang, Yeoung-Ju;Paik, Kye-Jin;Park, Jong-Tae;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2009
  • This study was performed to investigate the disinfection efficiency and the generation characteristics of disinfection by-products (DBPs) in the sewage effluent. In the case of total coliforms, disinfection efficiency higher than 99%, the required contact time was 30 min at chlorine dose of 0.5 mg/L, 20 min at 1.0 mg/L, and 10 min at 1.5 mg/L, respectively. When the sewage effluent was disinfected with chlorine dose of 0.5 mg/L for 10 min, the maximum generation concentration of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acid (HAAs) were $32.2{\mu}g/L$, $2.97{\mu}g/L$, and $16.29{\mu}g/L$, respectively. The concentration of chloroform was $28.4{\mu}g/L$ corresponding to 88.1% of the THMs. The concentration of HANs and HAAs were found to be inconsiderable. The average residual chlorine concentration of sewage effluent was 0.4 mg/L, the generation concentration of THMs was maximum $1.72{\mu}g/L$ and average $2.79{\mu}g/L$. HANs and HAAs were under the detection limit by GC/MSD.

Development of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-free Piezoelectric Ceramic Material with Core-shell Structure for Biomedical (바이오 메디컬용 코어-쉘 구조의 Bi0.5(Na0.78K0.22)0.5TiO3계 무연압전세라믹 소재의 개발)

  • Seong-jun Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.15-22
    • /
    • 2023
  • BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).

A Study on the Calculation of Load Resistance Factor of over Tension Anchors by Optimization Design (최적화 설계를 통한 과긴장 앵커의 하중-저항계수 산정 연구)

  • Soung-Kyu Lee;Yeong-Jin Lee;Yong-Jae Song;Tae-Jun Cho;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.17-26
    • /
    • 2023
  • To consider the risk of damage and fracture of P.C strands, the existing post-maintenance system alone has the limitations, hence it is necessary to quantitatively evaluate and predict the deterioration, durability and safety of facilities and establish a reasonable maintenance system considering the asset value of facilities. Therefore, it is worth considering a preventive maintenance plan that allows proactive measures to be taken before a major defect occurs in the temporary anchor. This study devised a preventive over tension method, reviewed its effectiveness through design and field tests, by calculating the resistance factors by performing a reliability-based optimization design. At this time, the over tension anchor method was evaluated using the ratio of the residual tension force after the fracture of P.C strands to the effective tension force before the fracture of P.C strand, followed by the resistance factor calculated by the optimal solution for each random variables using Excel solver and applying it to the limit state equations. As a result of the study, if the over tension ratio is 125% to 130%, the remaining strands showed a high resistance effect even after the fracture of P.C strand. As a result of the optimization design, it was found that it is appropriate to apply the load factor (γ) of 1.25, and the resistance factors of Φ1, Φ2, Φ3 as 0.7, 0.5, 0.6.

Disassembly of the Package/PCB on Wasted LED Light and their Characterizations (LED 조명 모듈에 장착된 패키지/PCB의 분리 및 특성)

  • Seunghyun Kim;Ha Bich Trinh;Taehun Son;Jaeryeong Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.3-9
    • /
    • 2023
  • Separation of LED packages from PCBs and analysis of the adhesive components was conducted to enhance the recycling potential of LED modules. LED package was separated from PCBs using heat treatment under optimal conditions: temperature of above 250 ℃ and time of 20 minutes. The separation equipment can be established using a hot air injector with controlling the rotational speed of the internal screw. The separation efficiency of each type of substrate (aluminum and glass fiber) was investigated with the thickness range of the adhesive materials (0.25-0.30 and 0.30-0.35 mm). Under the optimal conditions, the efficiency can reach to 97.5% for both types of substrates with adhesive materials of thickness 0.25~0.30mm. Characterization of the residual adhesive substances from the separated LED package and PCB using microwave digestion and ICP analysis showed that the residue contained of 95% of Sn, less than 5% of Cu and Ag.

Outcomes of laparoscopic choledochotomy using cholangioscopy via percutaneous-choledochal tube for the treatment of hepatolithiasis and choledocholithiasis: A preliminary Vietnamese study

  • Loi Van Le;Quang Van Vu;Thanh Van Le;Hieu Trung Le;Khue Kim Dang;Tuan Ngoc Vu;Anh Hoang Ngoc Nguyen;Thang Manh Tran
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • Backgrounds/Aims: Hepatolithiasis and choledocholithiasis are frequent pathologies and unfortunately, with the current treatment strategies, the recurrence incidence is still high. This study aimed to assess the outcomes of laparoscopic choledochotomy using cholangioscopy via the percutaneous-choledochal tube for the treatment of hepatolithiasis and choledocholithiasis in Vietnamese patients. Methods: A cross-sectional study of patients with hepatolithiasis and/or choledocholithiasis who underwent laparoscopic choledochotomy using intraoperative cholangioscopy via percutaneous-choledochal tube at the Department of Hepatopancreatobiliary Surgery, 108 Military Central Hospital, from June 2017 to March 2020. Results: A total of 84 patients were analyzed. Most patients were females (56.0%) with a median age of 55.56 years. Among them, 41.8% of patients had previous abdominal operations, with 33.4% having choledochotomy. All patients underwent successful laparoscopic common bile duct exploration followed by T-tube drainage without needing to convert to open surgery. Most patients (64.3%) had both intrahepatic and extrahepatic stones. The rate of stones ≥ 10 mm in diameter was 64.3%. Biliary strictures were observed in 19.1% of patients during cholangioscopy. Complete removal of stones was achieved in 54.8% of patients. Intraoperative complications were encountered in two patients, but there was no need to change the strategy. The mean operating time was 121.85 ± 30.47 minutes. The early postoperative complication rate was 9.6%, and all patients were managed conservatively. The residual stones were removed through the T-tube tract by subsequent choledochoscopy in 34/38 patients, so the total success rate was 95.2%. Conclusions: Laparoscopic choledochotomy combined with cholangioscopy through the percutaneous-choledochal tube is a safe and effective strategy for hepatolithiasis and/or choledocholithiasis, even in patients with a previous choledochotomy.

Development of a dual-mode energy-resolved neutron imaging detector: High spatial resolution and large field of view

  • Wenqin Yang;Jianrong Zhou;Jianqing Yang;Xingfen Jiang;Jinhao Tan;Lin Zhu;Xiaojuan Zhou;Yuanguang Xia;Li Yu;Xiuku Wang;Haiyun Teng;Jiajie Li;Yongxiang Qiu;Peixun Shen;Songlin Wang;Yadong Wei;Yushou Song;Jian Zhuang;Yubin Zhao;Junrong Zhang;Zhijia Sun;Yuanbo Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2799-2805
    • /
    • 2024
  • Energy-resolved neutron imaging is an effective way to investigate the internal structure and residual stress of materials. Different sample sizes have varying requirements for the detector's imaging field of view (FOV) and spatial resolution. Therefore, a dual-mode energy-resolved neutron imaging detector was developed, which mainly consisted of a neutron scintillator screen, a mirror, imaging lenses, and a time-stamping optical fast camera. This detector could operate in a large FOV mode or a high spatial resolution mode. To evaluate the performance of the detector, the neutron wavelength spectra and the multiple spatial resolution tests were conducted at CSNS. The results demonstrated that the detector accurately measured the neutron wavelength spectra selected by a bandwidth chopper. The best spatial resolution was about 20 ㎛ in high spatial resolution mode after event reconstruction, and a FOV of 45.0 mm × 45.0 mm was obtained in large FOV mode. The feasibility was validated to change the spatial resolution and FOV by replacing the scintillator screen and adjusting the lens magnification.

The treatment of an edentulous patient with DENTCA$^{TM}$ CAD/CAM Denture (CAD/CAM Denture를 이용한 완전 무치악 환자 수복 증례)

  • Park, Joon-Ho;Cho, In-Ho;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Nowadays, CAD/CAM is broadly used in dentistry for inlays, crowns, implant abutments and its spectrum is expanding to complete dentures. Utilizing CAD/CAM to fabricate complete dentures is expected to decrease chair time and the number of visits, thus decreasing total fabrication time, expenses and errors caused during fabrication processes. One of the systems using CAD/CAM, DENTCA$^{TM}$ CAD/CAM denture (DENTCA Inc. Los Angeles, USA) scans edentulous impressions, designs dentures digitally, fabricates try-in dentures by 3D printing and converts them into final dentures. Patients can wear final dentures after only 2 - 3 visits with satisfying adaptation. This case report introduces a 71-year-old male patient who visited to consult remaking of existing old dentures. Residual teeth with bad prognosis and root remnants were extracted and the patient used reformed existing mandibular denture for 2 months. And then DENTCA system started. One-step border molding was done using conventional tray of adequate size provided by DENTCA system and wash impression was taken. Gothic arch tracing was completed based on the vertical dimension of existing dentures. Both maxillary and mandibular trays were placed to the resultant centric relation and bite registration was taken. Then DENTCA scanned the bite registration, arranged the teeth, completed the festooning and fabricated the try-in dentures by 3D printing. The try-in dentures were positioned, occlusal plane and occlusal relations were evaluated. The try-in dentures were converted to final dentures. To create bilateral balanced occlusion, occlusal adjustment was done after clinical remounting using facebow transfer. The result was satisfactory and it was confirmed by patient and operator.

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).