DOI QR코드

DOI QR Code

Development of a dual-mode energy-resolved neutron imaging detector: High spatial resolution and large field of view

  • Wenqin Yang (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Jianrong Zhou (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Jianqing Yang (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Xingfen Jiang (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Jinhao Tan (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Lin Zhu (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Xiaojuan Zhou (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Yuanguang Xia (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Li Yu (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Xiuku Wang (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Haiyun Teng (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Jiajie Li (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Yongxiang Qiu (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Peixun Shen (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Songlin Wang (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Yadong Wei (Institute of Science & Technology Innovation, Dongguan University of Technology (Institute of Science & Technology Innovation and Advanced Manufacturing)) ;
  • Yushou Song (Harbin Engineering University) ;
  • Jian Zhuang (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Yubin Zhao (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Junrong Zhang (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Zhijia Sun (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Yuanbo Chen (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences)
  • Received : 2023.10.28
  • Accepted : 2024.02.22
  • Published : 2024.07.25

Abstract

Energy-resolved neutron imaging is an effective way to investigate the internal structure and residual stress of materials. Different sample sizes have varying requirements for the detector's imaging field of view (FOV) and spatial resolution. Therefore, a dual-mode energy-resolved neutron imaging detector was developed, which mainly consisted of a neutron scintillator screen, a mirror, imaging lenses, and a time-stamping optical fast camera. This detector could operate in a large FOV mode or a high spatial resolution mode. To evaluate the performance of the detector, the neutron wavelength spectra and the multiple spatial resolution tests were conducted at CSNS. The results demonstrated that the detector accurately measured the neutron wavelength spectra selected by a bandwidth chopper. The best spatial resolution was about 20 ㎛ in high spatial resolution mode after event reconstruction, and a FOV of 45.0 mm × 45.0 mm was obtained in large FOV mode. The feasibility was validated to change the spatial resolution and FOV by replacing the scintillator screen and adjusting the lens magnification.

Keywords

Acknowledgement

This work was supported by the National Key Research and Development Program of China [Grant No. 2021YFA1600703, 2022YFC2204903], the National Natural Science Foundation of China [Grant No. 12175254, 12227810, 12305348], the Guangdong-Hong-Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology.

References

  1. W. Kockelmann, G. Frei, E.H. Lehmann, P. Vontobel, J.R. Santisteban, Energy-selective neutron transmission imaging at a pulsed source, Nucl. Instrum. Methods A 578 (2007) 421-434. https://doi.org/10.1016/j.nima.2007.05.207
  2. L. Josic, E. Lehmann, A. Kaestner, Energy selective neutron imaging in solid state materials science, Nucl. Instrum. Methods A 651 (2011) 166-170. https://doi.org/10.1016/j.nima.2010.12.120
  3. Y. Su, K. Oikawa, T. Shinohara, K. Tetsuya, T. Horino, O. Idohara, Y. Misaka, Y. Tomota, Neutron Bragg-Edge Transmission Imaging for Microstructure and Residual Strain in Induction Hardened Gears, Scientific Reports, Nature Publisher Group), 2021, p. 11.
  4. I. Dhiman, R. Ziesche, T. Wang, H. Bilheux, L. Santodonato, X. Tong, C.Y. Jiang, I. Manke, W. Treimer, T. Chatterji, N. Kardjilov, Setup for polarized neutron imaging using in situ 3He cells at the Oak ridge national Laboratory high Flux Isotope Reactor CG-1D beamline, Rev. Sci. Instrum. 88 (2017).
  5. X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, W. Wong, Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements, Nucl. Instrum. Methods A 581 (2007) 485-494. https://doi.org/10.1016/j.nima.2007.08.079
  6. W. Kockelmann, T. Minniti, D. Pooley, G. Burca, R. Ramadhan, F. Akeroyd, G. Howells, C. Moreton-Smith, D. Keymer, J. Kelleher, S. Kabra, T. Lee, R. Ziesche, A. Reid, G. Vitucci, G. Gorini, D. Micieli, R. Agostino, V. Formoso, F. Aliotta, R. Ponterio, S. Trusso, G. Salvato, C. Vasi, F. Grazzi, K. Watanabe, J. Lee, A. Tremsin, J. McPhate, D. Nixon, N. Draper, W. Halcrow, J. Nightingale, Time-of-Flight neutron imaging on imat@ISIS: a new user facility for materials science, J. Imaging (2018) 4.
  7. T. Shinohara, T. Kai, K. Oikawa, T. Nakatani, M. Segawa, K. Hiroi, Y. Su, M. Ooi, M. Harada, H. Iikura, H. Hayashida, J.D. Parker, Y. Matsumoto, T. Kamiyama, H. Sato, Y. Kiyanagi, The energy-resolved neutron imaging system, RADEN, Rev. Sci. Instrum. 91 (2020).
  8. P. Trtik, M. Meyer, T. Wehmann, A. Tengattini, D. Atkins, E. Lehmann, M. Strobl, PSI 'neutron microscope'at ILL-D50 beamline-first results, Mater. Res. Proc. (2020) 23-28.
  9. A. Tengattini, N. Kardjilov, L. Helfen, P.-A. Douissard, N. Lenoir, H. Markotter, A. Hilger, T. Arlt, M. Paulisch, T. Turek, I. Manke, Compact and versatile neutron imaging detector with sub-4㎛ spatial resolution based on a single-crystal thin-film scintillator, Opt Express 30 (2022) 14461-14477. https://doi.org/10.1364/OE.448932
  10. D.S. Hussey, J.M. LaManna, E. Baltic, D.L. Jacobson, Neutron imaging detector with 2 ㎛ spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators, Nucl. Instrum. Methods Phys. Res., Sect. A 866 (2017) 9-12. https://doi.org/10.1016/j.nima.2017.05.035
  11. J. Yang, J. Zhou, X. Jiang, J. Tan, L. Zhang, J. Zhou, X. Zhou, W. Yang, Y. Xia, J. Chen, X. Sun, Q. Zhang, J. Li, Z. Sun, Y. Chen, A novel energy resolved neutron imaging detector based on a time stamping optical camera for the CSNS, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1000 (2021) 165222.
  12. A.S. Losko, Y. Han, B. Schillinger, A. Tartaglione, M. Morgano, M. Strobl, J. Long, A.S. Tremsin, M. Schulz, New perspectives for neutron imaging through advanced event-mode data acquisition, Sci. Rep. 11 (2021) 21360.
  13. P. Trtik, J. Hovind, C. Grunzweig, A. Bollhalder, V. Thominet, C. David, A. Kaestner, E.H. Lehmann, Improving the spatial resolution of neutron imaging at Paul scherrer institut - the neutron microscope project, Phys. Procedia 69 (2015) 169-176. https://doi.org/10.1016/j.phpro.2015.07.024
  14. X. Jiang, Q. Xiu, J. Zhou, J. Yang, J. Tan, W. Yang, L. Zhang, Y. Xia, X. Zhou, J. Zhou, L. Zhu, H. Teng, G.-a. Yang, Y. Song, Z. Sun, Y. Chen, Study on the Neutron Imaging Detector with High Spatial Resolution at China Spallation Neutron Source, Nucl Eng Technol, 2020.
  15. C. Wu, B. Tang, Z.J. Sun, Q. Zhang, Z. Yang, J. Zhang, Y.D. Yang, J.C. Liang, J. J. Wu, A study of ZnS(Ag)/6LiF with different mass ratios, Radiat. Meas. 58 (2013) 128-132. https://doi.org/10.1016/j.radmeas.2013.04.004
  16. M. Hildebrandt, J.-B. Mosset, A. Stoykov, Evaluation of ZnS:(LiF)-Li-6 and ZnO: (LiF)-Li-6 scintillation neutron detectors readout with SiPMs, IEEE Trans. Nucl. Sci. 65 (2018) 2061-2067. https://doi.org/10.1109/TNS.2018.2796309
  17. C. Grunzweig, G. Frei, E. Lehmann, G. Kuhne, C. David, Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems, Rev. Sci. Instrum. 78 (2007) 053708.
  18. M. Harada, M. Teshigawara, M. Ohi, E. Klinkby, L. Zanini, K. Batkov, K. Oikawa, Y. Toh, A. Kimura, Y. Ikeda, Experimental validation of the brightness distribution on the surfaces of coupled and decoupled moderators composed of 99.8% parahydrogen at the J-PARC pulsed spallation neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 903 (2018) 38-45. https://doi.org/10.1016/j.nima.2018.06.011