DOI QR코드

DOI QR Code

Disassembly of the Package/PCB on Wasted LED Light and their Characterizations

LED 조명 모듈에 장착된 패키지/PCB의 분리 및 특성

  • Seunghyun Kim (Department of Integrated Energy and Infra system, Kangwon National University) ;
  • Ha Bich Trinh (Research Institute for Earth Resources, Kangwon National University) ;
  • Taehun Son (Department of Integrated Energy and Infra system, Kangwon National University) ;
  • Jaeryeong Lee (Department of Energy & Resources Engineering, Kangwon National University)
  • 김승현 (강원대학교 에너지인프라융합학과) ;
  • 친빅하 (강원대학교 지구자원연구소) ;
  • 손태훈 (강원대학교 에너지인프라융합학과) ;
  • 이재령 (강원대학교 에너지자원.산업공학부)
  • Received : 2023.11.06
  • Accepted : 2023.11.23
  • Published : 2023.12.31

Abstract

Separation of LED packages from PCBs and analysis of the adhesive components was conducted to enhance the recycling potential of LED modules. LED package was separated from PCBs using heat treatment under optimal conditions: temperature of above 250 ℃ and time of 20 minutes. The separation equipment can be established using a hot air injector with controlling the rotational speed of the internal screw. The separation efficiency of each type of substrate (aluminum and glass fiber) was investigated with the thickness range of the adhesive materials (0.25-0.30 and 0.30-0.35 mm). Under the optimal conditions, the efficiency can reach to 97.5% for both types of substrates with adhesive materials of thickness 0.25~0.30mm. Characterization of the residual adhesive substances from the separated LED package and PCB using microwave digestion and ICP analysis showed that the residue contained of 95% of Sn, less than 5% of Cu and Ag.

LED 조명 모듈의 재활용을 위해 LED 패키지-PCB로 분리하고 선별하기 위한 분리장치를 제작하였고, 제작된 장비를 이용하여 부품분리실험을 진행하였다. 또한 분리된 LED 모듈과 패키지로부터 접착성분을 수거하여 분석을 진행하였다. 분리장비 제작을 위해 LED 패키지-PCB 분리 기초실험을 진행하였으며 분리에 필요한 최적조건으로 250 ℃이상의 온도조건, 20분 이상의 체류시간이 필요하다 판단하였다. 이러한 결과를 바탕으로 제작된 분리장비를 이용한 LED 패키지-PCB 분리실험은 온도 변화(150, 200, 250 ℃), 체류시간(5, 10, 20분)의 조건변화에 따른 분리율을 확인하였으며 최적 분리 조건을 도출하였다. 또한 시료의 기판의 종류(알루미늄, 유리섬유) 및 접착물질의 두께(0.25~0.30, 0.30~0.35 mm)별 분리 효율을 확인하였다. 최적조건으로 반응 온도 250 ℃, 체류시간 20분에서 기판의 종류엔 상관없이 접착물질의 두께 0.25~0.30mm에서 97.5% 분리를 확인하였다. 분리된 LED 패키지와 PCB로부터 잔류 접착물질을 수거하여 분석한 결과 Sn이 95% 이상 존재하는 것을 확인하였으며 5% 미만의 Cu, Ag가 확인되었다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(환경부)의 재원으로 한국환경산업기술원 미래발생 폐자원의 재활용 촉진 기술개발사업의 지원을 받아 수행된 연구임(2022003500001)

References

  1. Lee, D. H., Shin, D., Kim, T. H., et al., 2019 : Current Status of Recycling of LED Waste, Resources Recycling, 28(2), pp.14-22. https://doi.org/10.7844/kirr.2019.28.6.3
  2. Chang, M. H., Das, D., Varde, P. V., et al., 2012 : Light emitting diodes reliability review, Microelectronics Reliability, 52(5), pp.762-782. https://doi.org/10.1016/j.microrel.2011.07.063
  3. Pourhossein, F., Mousavi, S. M., 2018 : Enhancement of copper, nickel, and gallium recovery from LED waste by adaptation of Acidithiobacillus ferrooxidans, Waste Management, 79, pp.98-108. https://doi.org/10.1016/j.wasman.2018.07.010
  4. Türel, T., Tomović, Z., 2023 : Chemically Recyclable and Upcyclable Epoxy Resins Derived from Vanillin, ACS Sustainable Chemistry & Engineering, 11, pp.8308-8316.
  5. Lin, D., Liu, Z., Li, X., et al., 2023 : Development of metal-recycling technology in waste crystalline-silicon solar cells., Clean Energy, 7(3), 99.532-546.
  6. Van den Bossche, A., Vereycken, W., Vander, H., et al., 2019 : Recovery of gallium, indium, and arsenic from semiconductors using tribromide ionic liquids, ACS Sustainable Chemistry & Engineering, 7(17), pp.14451-14459. https://doi.org/10.1021/acssuschemeng.9b01724
  7. Swain, B., Mishra, C., Kang, L., et al., 2015 : Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching, Environmental research, 138, pp.401-408. https://doi.org/10.1016/j.envres.2015.02.027
  8. Rahman, S. M., Pompidou, S., Alix, T., et al., 2021 : A review of LED lamp recycling process from the 10 R strategy perspective, Sustainable Production and Consumption, 28, pp.1178-1191. https://doi.org/10.1016/j.spc.2021.07.025
  9. Kumar, A., Kuppusamy, V. K., Holuszko, M., et al., 2019 : LED lamps waste in Canada: Generation and characterization, Resources, Conservation and Recycling, 146, pp.329-336. https://doi.org/10.1016/j.resconrec.2019.04.006
  10. Rahman, S. M., Kim, J., Lerondel, G., et al., 2019 : Value retention options in circular economy: Issues and challenges of LED lamp preprocessing, Sustainability, 11(17), pp.4723.
  11. Fang, S., Yan, W., Cao, H., et al., 2018 : Evaluation on end-of-life LEDs by understanding the criticality and recyclability for metals recycling, Journal of Cleaner Production, 182, pp.624-633. https://doi.org/10.1016/j.jclepro.2018.01.260
  12. Reuter, M. A., van Schaik, A., 2015 : Product-centric simulation-based design for recycling: case of LED lamp recycling, Journal of Sustainable Metallurgy, 1, pp.4-28. https://doi.org/10.1007/s40831-014-0006-0
  13. Zhou, J., Zhu, N., Liu, H., et al., 2019 : Recovery of gallium from waste light emitting diodes by oxalic acidic leaching, Resources, Conservation and Recycling, 146, pp.366-372. https://doi.org/10.1016/j.resconrec.2019.04.002
  14. Amalu, E. H., Ekere, N. N., 2012 : Damage of lead-free solder joints in flip chip assemblies subjected to hightemperature thermal cycling, Computational Materials Science, 65, pp.470-484. https://doi.org/10.1016/j.commatsci.2012.08.005
  15. Yao, Y., Zeng, X., Guo, K., et al., 2015 : The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites, Composites Part A: Applied Science and Manufacturing, 69, pp.49-55. https://doi.org/10.1016/j.compositesa.2014.10.027